Loading...
Search for: rna--ribosomal--16s
0.01 seconds

    Characterization of a moderate thermophilic Nocardia species able to grow on polycyclic aromatic hydrocarbons

    , Article Letters in Applied Microbiology ; Volume 45, Issue 6 , December , 2007 , Pages 622-628 ; 02668254 (ISSN) Zeinali, M ; Vossoughi, M ; Ardestani, S. K ; Sharif University of Technology
    2007
    Abstract
    Aims: Our goal was the characterization of a new moderate thermophilic polycyclic aromatic hydrocarbon (PAH)-utilizing Nocardia strain. Methods and Results: A thermophilic bacterium, strain TSH1, was isolated from a contaminated soil. The macroscopic and microscopic features fit well with the description of Nocardia species. The results of 16S rRNA gene analysis showed 100% match to the type strain of N. otitidiscaviarum DSM 43242T. Strain TSH1 showed the same mycolic acid pattern as the type strain of N. otitidiscaviarum but its fatty acid profile did not permit identification to the species level. The carbon utilization profile of strain TSH1 was different from N. otitidiscaviarum. The... 

    Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir

    , Article Applied Microbiology and Biotechnology ; Volume 97, Issue 13 , July , 2013 , Pages 5979-5991 ; 01757598 (ISSN) Rabiei, A ; Sharifinik, M ; Niazi, A ; Hashemi, A ; Ayatollahi, S ; Sharif University of Technology
    2013
    Abstract
    Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC)... 

    Efficient biodegradation of naphthalene by a newly characterized indigenous achromobacter sp. FBHYA2 isolated from Tehran oil refinery complex

    , Article Water Science and Technology ; Volume 66, Issue 3 , March , 2012 , Pages 594-602 ; 02731223 (ISSN) Farjadfard, S ; Borghei, S. M ; Hassani, A. H ; Yakhchali, B ; Ardjmand, M ; Zeinali, M ; Sharif University of Technology
    IWA Pub  2012
    Abstract
    A bacterial strain, FBHYA2, capable of degrading naphthalene, was isolated from the American Petroleum Institute (API) separator of the Tehran Oil Refinery Complex (TORC). Strain FBHYA2 was identified as Achromobacter sp. based on physiological and biochemical characteristics and also phylogenetic similarity of 16S rRNA gene sequence. The optimal growth conditions for strain FBHYA2 were pH 6.0, 30°C and 1.0% NaCl. Strain FBHYA2 can utilize naphthalene as the sole source of carbon and energy and was able to degrade naphthalene aerobically very fast, 48 h for 96% removal at 500 mg/L concentration. The physiological response of Achromobacter sp., FBHYA2 to several hydrophobic chemicals... 

    An efficient biosurfactant-producing bacterium pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 69, Issue 2 , 2009 , Pages 183-193 ; 09277765 (ISSN) Bagheri Lotfabad, T ; Shourian, M ; Roostaazad, R ; Rouholamini Najafabadi, A ; Adelzadeh, M. R ; Akbari Noghabi, K ; Sharif University of Technology
    2009
    Abstract
    A bacterial strain was isolated and cultured from the oil excavation areas in tropical zone in southern Iran. It was affiliated with Pseudomonas. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, MR01, was identical to those of cultured representatives of the species Pseudomonas aeruginosa. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties. Compositional analysis revealed that the extracted biosurfactant was composed of high percentages lipid (∼65%, w/w) and carbohydrate (∼30%, w/w) in addition to a minor fraction of protein (∼4%, w/w). The best production of 2.1 g/l was obtained when the cells were grown on...