Loading...
Search for: robots-motion
0.01 seconds

    Hybrid control and motion planning of dynamical legged locomotion

    , Book ; Sadati, Nasser
    Wiley  2012
    Abstract
    This book provides a comprehensive presentation of issues and challenges faced by researchers and practicing engineers in motion planning and hybrid control of dynamical legged locomotion. The major features range from offline and online motion planning algorithms to generate desired feasible periodic walking and running motions and tow-level control schemes, including within-stride feedback laws, continuous time update laws and event-based update laws, to asymptotically stabilize the generated desired periodic orbits. This book describes the current state of the art and future directions across all domains of dynamical legged locomotion so that readers can extend proposed motion planning... 

    Solving robot motion planning problem using Hopfield neural network in a fuzzified environment

    , Article IEEE International Conference on Plasma Science ; Volume 2 , 2002 , Pages 1144-1149 ; 07309244 (ISSN) Sadati, N ; Taheri, J ; Sharif University of Technology
    2002
    Abstract
    In this paper, a new approach based on Artificial Neural Networks to solve the robot motion planning problem is presented. For this purpose, a Hopfield Neural Network is used in a certain constraint satisfaction problem of the robot motion planning in conjunction with fuzzy modeling of the real robot's environment so that the energy of a state can be interpreted as the extent to which a hypothesis fit the underlying neural formulation model. Thus, low energy values indicate a good level of constraint satisfaction of the problem. Finally, since the obtained answer by the Hopfield Neural Network is not optimal, some algorithms are designed to optimize and generate the final answer  

    A real-time clearance-based approach for motion planning of mobile robots

    , Article 7th IEEE International Conference on Cognitive Informatics, ICCI 2008, Stanford University, CA, 14 August 2008 through 16 August 2008 ; 2008 , Pages 394-401 ; 9781424425389 (ISBN) Naderan Tahan, M ; Iraji, R ; Manzuri Shalmani, M. T ; Sharif University of Technology
    2008
    Abstract
    In this paper, two different important quality metrics, clearance and execution time, for motion planning of mobile robots are studied. Then a new approach, called Clearance-Based Probabilistic Roadmap Method (CBPRM (c)), is proposed which in contrast to VV(c) method, Visibility-Voronoi with clearance c, beside satisfaction of a predefined clearance is very efficient in running time. This provides the CBPRM (c) to be applicable in dynamic environments which require realtime approaches. Experiments showed that the CBPRM(c) is able to generate paths with very low execution time considering determined clearance. © 2008 IEEE  

    An approximation algorithm for d1-optimal motion of a rod robot with fixed rotations

    , Article International Journal of Computer Mathematics ; Volume 83, Issue 3 , 2006 , Pages 357-370 ; 00207160 (ISSN) Abam, M. A ; Ghodsi, M ; Sharif University of Technology
    2006
    Abstract
    Given a translating and rotating rod robot in a plane in the presence of polygonal obstacles with the initial and final placements of the rod known, the d1-optimal motion planning problem is defined as finding a collision-free motion of the rod such that the orbit length of a fixed but arbitrary point F on the rod is minimized. In this paper we study a special case of this problem in which the rod can translate freely, but can only rotate by some pre-specified given angles around F. We first characterize the d1-optimal motion of the robot under the given conditions and then present a (1 + ε)-approximation algorithm for finding the optimal path. The running time of the algorithm is bounded by... 

    Path planning for a hyper-redundant manipulator with lockable joints using PSO

    , Article International Conference on Robotics and Mechatronics, ICRoM 2013 ; 2013 , pp. 224-229 ; ISBN: 9781467358118 Taherifar, A ; Alasty, A ; Salarieh, H ; Boroushaki, M ; Sharif University of Technology
    Abstract
    In this paper, the path planning problem of special hyper-redundant manipulator with lockable joints is solved using particle swarm optimization. There is a locking mechanism in each link of this tendon-actuated manipulator. At any time, all links of the manipulator must be locked except one. Then by pulling the cables, the configuration of the corresponding link will change and the manipulator will tilt to its new position. Therefore, by unlocking the links in sequence and pulling the cables, any desirable configuration of manipulator can be reached. In path planning problem, the desired path of the end-effector is given and the optimum sequence of switching (discrete) and the optimum... 

    Path planning for a hyper-redundant manipulator with lockable joints using PSO

    , Article International Conference on Robotics and Mechatronics, ICRoM 2013 ; Feb , 2013 , Pages 224-229 ; 9781467358118 (ISBN) Taherifar, A ; Alasty, A ; Salarieh, H ; Boroushaki, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, the path planning problem of special hyper-redundant manipulator with lockable joints is solved using particle swarm optimization. There is a locking mechanism in each link of this tendon-actuated manipulator. At any time, all links of the manipulator must be locked except one. Then by pulling the cables, the configuration of the corresponding link will change and the manipulator will tilt to its new position. Therefore, by unlocking the links in sequence and pulling the cables, any desirable configuration of manipulator can be reached. In path planning problem, the desired path of the end-effector is given and the optimum sequence of switching (discrete) and the optimum... 

    Locomotion modes of a novel piezo-driven microrobot: Analytical modeling and performance evaluation

    , Article Mechanism and Machine Theory ; Volume 52 , 2012 , Pages 248-266 ; 0094114X (ISSN) Eigoli, A. K ; Vossoughi, G. R ; Sharif University of Technology
    2012
    Abstract
    This paper presents a novel, sliding, A-shaped microrobot with nanometric resolution for precision positioning applications. The microrobot is actuated near its natural frequency using a piezoelectric stack actuator to produce translational motion. The dynamic modeling of the mechanism is based on the assumptions of the linear piezoelectric behavior and the Coulomb friction model. Using this model the required condition for generating net motion is found. The suitability of three simple, friction-based locomotion modes for implementation on the proposed device is addressed. Influences of some important configuration parameters on the behavior of the microrobot, based on defined criteria, are... 

    Flexible formation of multiple car-like robots with respect to a dynamic environment

    , Article Scientia Iranica ; Volume 23, Issue 4 , 2016 , Pages 1844-1855 ; 10263098 (ISSN) Sayyaadi, H ; Sharif University of Technology
    Sharif University of Technology 
    Abstract
    This paper attempts to give a perspective on decentralized formation control of multiple car-like mobile robots using local information and formation changes in a dynamic environment having several obstacles. In addition, for every mobile robot, it takes physical dimensions, mass, moment of inertia, movement constraints, and saturation of actuators into account. This study makes use of Input/Output Feedback Linearization Method to control each robot. Hence, hierarchical leader-follower based algorithm is employed to control the group formation. To avoid collision between robots and obstacles, and of robots with each other, local artificial potential fields are addressed. The group can change... 

    Efficient and safe path planning for a mobile robot using genetic algorithm

    , Article 2009 IEEE Congress on Evolutionary Computation, CEC 2009, Trondheim, 18 May 2009 through 21 May 2009 ; 2009 , Pages 2091-2097 ; 9781424429592 (ISBN) Naderan Tahan, M ; Manzuri Shalmani, T ; Sharif University of Technology
    2009
    Abstract
    In this paper, a new method for path planning is proposed using a genetic algorithm (GA). Our method has two key advantages over existing GA methods. The first is a novel environment representation which allows a more efficient method for obstacles dilation in comparison to current cell based approaches that have a tradeoff between speed and accuracy. The second is the strategy we use to generate the initial population in order to speed up the convergence rate which is completely novel. Simulation results show that our method can find a near optimal path faster than computational geometry approaches and with more accuracy in smaller number of generations than GA methods. © 2009 IEEE  

    Path planning of 3-RRR parallel robot by avoiding mechanical interferences via Artificial Potential Field

    , Article International Conference on Robotics and Mechatronics, ICROM 2015, 7 October 2015 through 9 October 2015 ; 2015 , Pages 240-245 ; 9781467372343 (ISBN) Kazemi, H ; Porshokouhi, P. N ; Masouleh, M. T ; Novin, R. S ; Sharif University of Technology
    2015
    Abstract
    This paper deals with the collision-free path planning of planar parallel robot by avoiding mechanical interferences and obstacle within the workspace. For this purpose, an Artificial Potential Field approach is developed. As the main contribution of this paper, In order to circumvent the local minima problem of the potential fields, a novel approach is proposed which is a combination of Potential Field approach, Fuzzy Logic and also a novel algorithm consisting of Following Obstacle as well as Virtual Obstacle methods, as a hybrid method. Moreover, the inverse kinematic problem of the 3-RRR parallel robot is analyzed and then the aforementioned hybrid method is applied to this mechanism in... 

    Motion analysis of a vibrational microrobot with two perpendicular harmonic actuators and deriving the design parameters in stick-slip mode

    , Article Journal of Computational and Nonlinear Dynamics ; Volume 11, Issue 2 , 2016 ; 15551415 (ISSN) Jalili, H ; Vossoughi, G ; Salarieh, H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    In this paper, the stick-slip motion of a microrobot with two perpendicular vibrational actuators is studied. This motion is based on the friction drive principle. To determine the effective parameters in the motion of microrobot, the equations of motion of the microrobot are derived. To simplify the equations for determining the design parameters, the vibrational actuators are modeled with two perpendicular harmonic forces. To study the motion dynamics of the microrobot, its equation of motion is derived in a nondimensional expression by defining the nondimensional effective parameters. The Fourier expansion (F.E.) method is used to analyze the numerical results and it showed some... 

    Path planning of modular robots on various terrains using Q-learning versus optimization algorithms

    , Article Intelligent Service Robotics ; Volume 10, Issue 2 , 2017 , Pages 121-136 ; 18612776 (ISSN) Haghzad Klidbary, S ; Bagheri Shouraki, S ; Sheikhpour Kourabbaslou, S ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Self-reconfigurable modular robots (SRMRs) have recently attracted considerable attention because of their numerous potential applications in the real world. In this paper, we draw a comprehensive comparison among five different algorithms in path planning of a novel SRMR system called ACMoD through an environment comprised of various terrains in a static condition. The contribution of this work is that the reconfiguration ability of ACMoD has been taken into account. This consideration, though raises new algorithmic challenges, equips the robot with new capability to pass difficult terrains rather than bypassing them, and consequently the robot can achieve better performance in terms of... 

    A continuous RRT*-based path planning method for non-holonomic mobile robots using B-spline curves

    , Article Journal of Ambient Intelligence and Humanized Computing ; 2022 ; 18685137 (ISSN) Eshtehardian, S. A ; Khodaygan, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Rapidly exploring random trees (RRT) are sampling-based approaches being widely applied for path planning of mobile robots. Since the output of these algorithms usually is a stream of discrete lines involving discontinuity at the linking points, kinematic constraints restrict the robot's movements. Consequently, robots may not pass discrete points in the path correctly. Hence, the using CAGD (Computer-Aided Geometry Design) curves can run simultaneously alongside those algorithms or may run after that to make a smooth path and that's the way in which non-holonomic constraints can be considered perfect and robots can be droved autonomously across them about the collision detection method...