Loading...
Search for: robust-adaptive-control
0.003 seconds

    Functional Modeling of Normal and CHF Heart and Control of Total Artificial Heart- An Optimizing Approach

    , Ph.D. Dissertation Sharif University of Technology Ravanshadi, Samin (Author) ; Jahed, Mehran (Supervisor)
    Abstract
    World-wide, Congestive Heart Failure (CHF) takes hundreds of thousands of lives each year. This chronic heart disease causes poor performance of the heart and insufficient blood pumping to the organs. A significant percentage of patients with CHF require heart transplants for their survival. The high cost of heart transplant, shortage of donor hearts and possibility of its rejection by recipients are serious problems of this type of treatment. Therefore a large number of heart patients are potential beneficiaries of artificial blood pumps such as Ventricular Assist Device (VAD) and Total Artificial Heart (TAH). Performance of these systems must be compliant and complementary to the existing... 

    Robust adaptive Lyapunov-based control of hepatitis B infection

    , Article IET Systems Biology ; Volume 12, Issue 2 , April , 2018 , Pages 62-67 ; 17518849 (ISSN) Aghajanzadeh, O ; Sharifi, M ; Tashakori, S ; Zohoor, H ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    A new robust adaptive controller is developed for the control of the hepatitis B virus (HBV) infection inside the body. The non-linear HBV model has three state variables: uninfected cells, infected cells and free viruses. A control law is designed for the antiviral therapy such that the volume of infected cells and the volume of free viruses are decreased to their desired values which are zero. One control input represents the efficiency of drug therapy in inhibiting viral production and the other control input represents the efficiency of drug therapy in blocking new infection. The proposed controller ensures the stability and robust performance in the presence of parametric and... 

    Nonlinear robust adaptive Cartesian impedance control of UAVs equipped with a robot manipulator

    , Article Advanced Robotics ; Volume 29, Issue 3 , Feb , 2015 , Pages 171-186 ; 01691864 (ISSN) Sharifi, M ; Sayyaadi, H ; Sharif University of Technology
    Robotics Society of Japan  2015
    Abstract
    In this paper, a new nonlinear robust adaptive impedance controller is addressed for Unmanned Aerial Vehicles (UAVs) equipped with a robot manipulator that physically interacts with environment. A UAV equipped with a robot manipulator is a novel system that can perform different tasks instead of human being in dangerous and/or inaccessible environments. The objective of the proposed robust adaptive controller is control of the UAV and its robotic manipulators end-effector impedance in Cartesian space in order to have a stable physical interaction with environment. The proposed controller is robust against parametric uncertainties in the nonlinear dynamics model of the UAV and the robot... 

    Finite time-Lyapunov based approach for robust adaptive control of wind-induced oscillations in power transmission lines

    , Article Journal of Sound and Vibration ; Volume 371 , 2016 , Pages 19-34 ; 0022460X (ISSN) Ghabraei, S ; Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Academic Press  2016
    Abstract
    Large amplitude oscillation of the power transmission lines, which is also known as galloping phenomenon, has hazardous consequences such as short circuiting and failure of transmission line. In this article, to suppress the undesirable vibrations of the transmission lines, first the governing equations of transmission line are derived via mode summation technique. Then, due to the occurrence of large amplitude vibrations, nonlinear quadratic and cubic terms are included in the derived linear equations. To suppress the vibrations, arbitrary number of the piezoelectric actuators is assumed to exert the actuation forces. Afterwards, a Lyapunov based approach is proposed for the robust adaptive... 

    Robust adaptive sliding mode admittance control of exoskeleton rehabilitation robots

    , Article Scientia Iranica ; Volume 25, Issue 5B , 2018 , Pages 2628-2642 ; 10263098 (ISSN) Torabi, M ; Sharifi, M ; Vossoughi, Gh ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    A nonlinear robust adaptive sliding mode admittance controller is proposed for exoskeleton rehabilitation robots. The proposed controller has robustness against uncertainties of dynamic parameters using an adaptation law. Furthermore, an adaptive Sliding Mode Control (SMC) scheme is employed in the control law to provide robustness against disturbances (non-parametric uncertainties) with unknown bounds. For this purpose, another adaptation law is defined for the variation of the SMC gain. The proposed scheme is augmented with an admittance control method to provide the patient with compliance during interaction with the rehabilitation robot. The stability of the proposed controller and the... 

    Robust Adaptive Controller Design For Attitude of Flexible Launch Vehicle With Navigation System Uncertainty

    , M.Sc. Thesis Sharif University of Technology Khajeh Mohammadi, Fatemeh (Author) ; Fathi, Mohsen (Supervisor) ; Khoshnod, Abdollmajid (Supervisor)
    Abstract
    In this thesis first a flrxible launch vehicle is modeled and simulated by taking the moment vibrations into consideration, then navigation system and it’s uncertainties which depicts more realistic performance are added up and the guidance is designed based on pitch-programming. Adaptive robust controller is designed and implemented with the approach of sliding mode such that making the system able to keep it’s despite of navigation uncertainties and flexibilities, also controlling the attitude in the framework of adaptivity and robustness  

    Control of Shoulder Exoskeleton System through its Musclo-skeletal Model

    , M.Sc. Thesis Sharif University of Technology Babazadeh Maghsoudloo, Keyhan (Author) ; Jahed, Mehran (Supervisor)
    Abstract
    Due to the increasing average age of societies, daily monitoring of the elderly activities is. Even activities such as sitting, getting up and lifting may be beyond the normal ability of an older person. In this context, the need to provide appropriate assistive devices for welfare and normal activities of this age group is raised. In addition, self managed rehabilitation activities which may be performed at home or work without direct involvement of a physician or physiotherapist is yet another reason where such devices may be of importance. For this purpose, specially devised robots may be utilized to accompany and couple with the upper or lower extremities as an assistive or... 

    Impedance Control of a Knee Rehabilitation Exoskeleton Using Robust Adaptive Control

    , M.Sc. Thesis Sharif University of Technology Torabi, Mansour (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    The present study deals with designing controller for Therapeutic Exercise Robots which belongs to larger group namely Rehabilitation robots. Therapeutic exercise robots are often realized in shape of exoskeleton robots. The main line of present research is involved with, designing controller for lower limb therapeutic exercise robots and offering and implementing technical rehabilitation ideas. Firstly, in order to have a reliable position-control, considering practical limitations (e.g. system uncertainties), a robust adaptive control has been designed. Adaptive control can deals with parameters uncertainties and covering unstructured uncertainties (e.g. disturbance and noise) can be... 

    Comment on S. Ahmed, H. Wang, and Y. Tian, “Robust adaptive fractional-order terminal sliding mode control for lower-limb exoskeleton,” Asian J. Control, vol. 21, no. 1, pp. 1–10 (2019)

    , Article Asian Journal of Control ; 2022 ; 15618625 (ISSN) Samaei, M. H ; Sheikh Ahmadi, S ; Naderi Soorki, M ; Amini, S. S ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    In this comment, it is shown that there are some non-negligible big mistakes in the analyses and stability proof of the proposed controller in the quoted paper, which makes the main results of this paper to be incorrect. The main unavoidable mistakes in the stability analysis of the main theorem (Theorem 1) are stated and some remarks are also mentioned to fix some of them. © 2022 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd  

    Adaptive backstepping control of uncertain lorenz system

    , Article Proceeding of the 5th International Symposium on Mechatronics and its Applications, ISMA 2008, 27 May 2008 through 29 May 2008, Amman ; 2008 ; 9781424420346 (ISBN) Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    2008
    Abstract
    In this paper, a novel robust adaptive control method is proposed for controlling the well-known Lorenz chaotic attractor. Firstly, we design a new Backstepping controller for controlling the Lorenz system based on the Lyapunov stability theorem. The proposed method is different from the typical Backstepping control method and it can overcome the singularity problem appeared in using the typical Backstepping control method. So by exploiting the property of the system, the resulting controller is singularity free and the closed-loop system is stable globally. Since in practice we have not access to full information of the system states, we set the controller parameters in order to achieve a... 

    Adaptive sliding mode control of a piezo-actuated bilateral teleoperated micromanipulation system

    , Article Precision Engineering ; Volume 35, Issue 2 , 2011 , Pages 309-317 ; 01416359 (ISSN) Motamedi, M ; Ahmadian, M. T ; Vossoughi, G ; Rezaei, S. M ; Zareinejad, M ; Sharif University of Technology
    Abstract
    Piezoelectric actuators are widely used in micro manipulation applications. However, hysteresis nonlinearity limits the accuracy of these actuators. This paper presents a novel approach for utilizing a piezoelectric nano-stage as the slave manipulator of a teleoperation system based on a sliding mode controller. The Prandtl-Ishlinskii (PI) model is used to model actuator hysteresis in feedforward scheme to cancel out this nonlinearity. The presented approach requires full state and force measurements at both the master and slave sides. Such a system is costly and also difficult to implement. Therefore, sliding mode unknown input observer (UIO) is proposed for full state and force...