Loading...
Search for: robust-model-predictive-control
0.009 seconds

    Smooth switching in a scheduled robust model predictive controller

    , Article Journal of Process Control ; Volume 31 , 2015 , Pages 55-63 ; 09591524 (ISSN) Khani, F ; Haeri, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract This paper proposes a bumpless transfer method to overcome the problem of switching jumps in a scheduled robust model predictive control approach. A scheduled robust model predictive controller implements a set of local robust model predictive controllers based on an on-line switching strategy. This method could enlarge the domain of attraction efficiently but the transient response might be hampered by spikes appearing at the moment of switching between adjacent local controllers. The proposed algorithm could enhance the transient response by implementing some intermediate controllers augmented to the main control scheme to solve the problem without needing more computation. The... 

    Integrated guidance and control of elastic flight vehicle based on robust MPC

    , Article International Journal of Robust and Nonlinear Control ; 2014 Shamaghdari, S ; Nikravesh, S. K. Y ; Haeri, M ; Sharif University of Technology
    Abstract
    Integrated guidance and control of an elastic flight vehicle based on constrained robust model predictive control is proposed. The design is based on a partial state feedback control law that minimizes a cost function within the framework of linear matrix inequalities. It is shown that the solution of the defined optimization problem stabilizes the nonlinear plant. Nonlinear kinematics and dynamics are taken into account, and internal stability of the closed-loop nonlinear system is guaranteed. The performance and effectiveness of the proposed integrated guidance and control against non-maneuvering and weaving targets are evaluated using computer simulations  

    Constrained tracking control for nonlinear systems

    , Article ISA Transactions ; Volume 70 , 2017 , Pages 64-72 ; 00190578 (ISSN) Khani, F ; Haeri, M ; Sharif University of Technology
    Abstract
    This paper proposes a tracking control strategy for nonlinear systems without needing a prior knowledge of the reference trajectory. The proposed method consists of a set of local controllers with appropriate overlaps in their stability regions and an on-line switching strategy which implements these controllers and uses some augmented intermediate controllers to ensure steering the system states to the desired set points without needing to redesign the controller for each value of set point changes. The proposed approach provides smooth transient responses despite switching among the local controllers. It should be mentioned that the stability regions of the proposed controllers could be... 

    Design of a robust model predictive controller with reduced computational complexity

    , Article ISA Transactions ; Volume 53, Issue 6 , 1 November , 2014 , Pages 1754-1759 ; ISSN: 00190578 Razi, M ; Haeri, M ; Sharif University of Technology
    Abstract
    The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector is defined such that the objective function contours in the defined optimization problem become vertical or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state feedback that minimizes the infinite horizon objective function by solving some linear matrix inequalities. The simulation results show that the number of iterations to solve the problem... 

    Integrated guidance and control of elastic flight vehicle based on robust MPC

    , Article International Journal of Robust and Nonlinear Control ; Volume 25, Issue 15 , 2015 , Pages 2608-2630 ; 10498923 (ISSN) Shamaghdari, S ; Nikravesh, S. K. Y ; Haeri, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    Integrated guidance and control of an elastic flight vehicle based on constrained robust model predictive control is proposed. The design is based on a partial state feedback control law that minimizes a cost function within the framework of linear matrix inequalities. It is shown that the solution of the defined optimization problem stabilizes the nonlinear plant. Nonlinear kinematics and dynamics are taken into account, and internal stability of the closed-loop nonlinear system is guaranteed. The performance and effectiveness of the proposed integrated guidance and control against non-maneuvering and weaving targets are evaluated using computer simulations  

    Design of an RMPC with a time-varying terminal constraint set for tracking problem

    , Article International Journal of Robust and Nonlinear Control ; Volume 26, Issue 12 , 2016 , Pages 2623-2642 ; 10498923 (ISSN) Razi, M ; Haeri, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    This paper presents a robust model predictive control algorithm with a time-varying terminal constraint set for systems with model uncertainty and input constraints. In this algorithm, the nonlinear system is approximated by a linear model where the approximation error is considered as an unstructured uncertainty that can be represented by a Lipschitz nonlinear function. A continuum of terminal constraint sets is constructed off-line, and robust stability is achieved on-line by using a variable control horizon. This approach significantly reduces the computational complexity. The proposed robust model predictive controller with a terminal constraint set is used in tracking set-points for... 

    Efficient algorithms for online tracking of set points in robust model predictive control

    , Article International Journal of Systems Science ; Volume 48, Issue 8 , 2017 , Pages 1635-1645 ; 00207721 (ISSN) Razi, M ; Haeri, M ; Sharif University of Technology
    Abstract
    This paper presents some computationally efficient algorithms for online tracking of set points in robust model predictive control context subject to state and input constraints. The nonlinear systems are represented by a linear model along with an additive nonlinear term which is locally Lipschitz. As an unstructured uncertainty, this term is replaced in the robust stability constraint by its Lipschitz coefficient. A scheduled control technique is employed to transfer the system to desired set points, given online, by designing local robust model predictive controllers. This scheme includes estimating the regions of feasibility and stability of the related equilibriums and online switching... 

    Decentralized robust model predictive control for multi-input linear systems

    , Article UKACC 12th International Conference on Control, CONTROL 2018, 5 September 2018 through 7 September 2018 ; 2018 , Pages 13-18 ; 9781538628645 (ISBN) Adelipour, S ; Haeri, M ; Pannocchia, G ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, a decentralized model predictive control approach is proposed for discrete linear systems with a high number of inputs and states. The system is decomposed into several interacting subsystems. The interaction among subsystems is modeled as external disturbances. Then, using the concept of robust positively invariant ellipsoids, a robust model predictive control law is obtained for each subsystem solving several linear matrix inequalities. Maintaining the recursive feasibility while considering the attenuation of mutual coupling at each time step and the stability of the overall system are investigated. Moreover, an illustrative simulation example is provided to demonstrate the... 

    Model predictive control of nonlinear discrete time systems with guaranteed stability

    , Article Asian Journal of Control ; 2018 ; 15618625 (ISSN) Shamaghdari, S ; Haeri, M ; Sharif University of Technology
    Wiley-Blackwell  2018
    Abstract
    This paper presents the design of a new robust model predictive control algorithm for nonlinear systems represented by a linear model with unstructured uncertainty. The linear model is obtained by linearizing the nonlinear system at an operating point and the difference between the nonlinear and linear model is considered as a Lipschitz nonlinear function. The controller is designed for the linear model, which fulfills the stabilization condition for the nonlinear term. Unlike previous studies that have not considered a valid Lipschitz matrix of nonlinear term in the design process, we propose an algorithm in this paper in which it is considered. Therefore, the closed loop stability of the... 

    Model predictive control of nonlinear discrete time systems with guaranteed stability

    , Article Asian Journal of Control ; Volume 22, Issue 2 , 2020 , Pages 657-666 Shamaghdari, S ; Haeri, M ; Sharif University of Technology
    Wiley-Blackwell  2020
    Abstract
    This paper presents the design of a new robust model predictive control algorithm for nonlinear systems represented by a linear model with unstructured uncertainty. The linear model is obtained by linearizing the nonlinear system at an operating point and the difference between the nonlinear and linear model is considered as a Lipschitz nonlinear function. The controller is designed for the linear model, which fulfills the stabilization condition for the nonlinear term. Unlike previous studies that have not considered a valid Lipschitz matrix of nonlinear term in the design process, we propose an algorithm in this paper in which it is considered. Therefore, the closed loop stability of the... 

    Dynamic characterization and control of a parallel haptic interaction with an admittance type virtual environment

    , Article Meccanica ; Volume 55, Issue 3 , 2020 , Pages 435-452 Khadivar, F ; Sadeghnejad, S ; Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Springer  2020
    Abstract
    Haptic interfaces, a kinesthetic link between a virtual environment and a human operator play a pivotal role in the reproduction of realistic haptic force feedback of the virtual reality-based simulators. Since most of the practical control theories are model-based, the identification of the robot’s dynamics, for precise modeling of the system dynamics, is a process of high significance and usage. This research addresses dynamic characterization, performance issues, and structural stability, associated with a parallel haptic device interaction with an admittance type virtual environment. In this regard, considering the Lion identification scheme, we characterized the dynamics of a robot...