Loading...
Search for: rotational-motion
0.006 seconds

    Design, modeling and optimization of a novel two DOF polymeric electro-thermal micro-actuator

    , Article Applied Mechanics and Materials ; Vol. 307 , 2013 , pp. 112-116 ; ISSN: 16609336 ; ISBN: 9783037856598 Sheikhbahaie, R ; Alasty, A ; Salarieh, H ; Sharif University of Technology
    Abstract
    In this paper, design, simulation and optimization of a novel electrothermally-activated polymeric microactuator capable of generating combination of bidirectional lateral and rotational motions are presented. The composite structure of this actuator is consisted of a symmetric meandered shape silicon skeleton, a SU8 thermal expandable polymer and a thin film chrome layer heater. This actuator is controlled by applying appropriate voltages on its four terminals. With the purpose of dimension optimization, a numerical parametric study is executed. The modeled actuator which is 1560 ?m long, 156 ?m wide and 30 ?m thick, demonstrates a remarkable lateral displacement of 23 ?m at power... 

    Modeling, control and simulation of a new large scale cable-driven robot

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009 ; Volume 7, Issue PARTS A AND B , 2009 , p. 11-16 ; ISBN: 9780791849040 Alikhani, A ; Behzadipour, S ; Ghahremani, F ; Alasty, A ; Vanini, S. A. S ; Sharif University of Technology
    Abstract
    In this paper, modeling and control of a new cable-driven robot is presented. In this mechanism, the cable arrangement eliminates the rotational motions leaving the moving platform with three translational motion. The mechanism has potentials for large scale manipulation and robotics in harsh environments. In this article kinematics and dynamics models for the proposed cable-driven architecture are derived. Additionally, Feedback linearization under input constraints is used for the control of the robot. The control algorithm ensures the cable tensions are positive while minimizing the sum of all the torques exerted by the actuators. Finally, the implementation of the proposed method is... 

    Modeling, control and simulation of a new large scale cable-driven robot

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 30 August 2009 through 2 September 2009 ; Volume 7, Issue PART A , August , 2010 , Pages 11-16 ; 9780791849040 (ISBN) Alikhani, A ; Behzadipour, S ; Ghahremani, F ; Alasty, A ; Sadough Vanini, S. A ; The Design Engineering Division, ASME; The Computers and Information in Engineering Division, ASME ; Sharif University of Technology
    2010
    Abstract
    In this paper, modeling and control of a new cable-driven robot is presented. In this mechanism, the cable arrangement eliminates the rotational motions leaving the moving platform with three translational motion. The mechanism has potentials for large scale manipulation and robotics in harsh environments. In this article kinematics and dynamics models for the proposed cable-driven architecture are derived. Additionally, Feedback linearization under input constraints is used for the control of the robot. The control algorithm ensures the cable tensions are positive while minimizing the sum of all the torques exerted by the actuators. Finally, the implementation of the proposed method is... 

    A close look at the motion of C60 on gold

    , Article Current Applied Physics ; Volume 15, Issue 11 , November , 2015 , Pages 1402-1411 ; 15671739 (ISSN) Pishkenari, H. N ; Nemati, A ; Meghdari, A ; Sohrabpour, S ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this paper, we have studied the motion of buckminsterfullerene (C60) on a gold surface by analyzing its potential energy and using classical molecular dynamics method. The results can be employed to investigate the motion of C60-based nanocars which have been made in recent years. For this purpose, we have studied the translational and rotational motions of C60 molecule independently. First, we have calculated the potential energy of a C60 molecule on a gold surface in different orientations and positions and employed this data to predict fullerene motion by examining its potential energy. Then we have simulated the motion of C60 at... 

    Modeling, control and simulation of a new large scale cable-driven robot

    , Article Proceedings of the ASME Design Engineering Technical Conference, 30 August 2009 through 2 September 2009 ; Volume 7, Issue PARTS A AND B , 2009 , Pages 11-16 ; 9780791849040 (ISBN) Alikhani, A ; Behzadipour, S ; Ghahremani, F ; Alasty, A ; Sadough Vanini, S.A ; Sharif University of Technology
    Abstract
    In this paper, modeling and control of a new cable-driven robot is presented. In this mechanism, the cable arrangement eliminates the rotational motions leaving the moving platform with three translational motion. The mechanism has potentials for large scale manipulation and robotics in harsh environments. In this article kinematics and dynamics models for the proposed cable-driven architecture are derived. Additionally, Feedback linearization under input constraints is used for the control of the robot. The control algorithm ensures the cable tensions are positive while minimizing the sum of all the torques exerted by the actuators. Finally, the implementation of the proposed method is... 

    Investigation into thermally activated migration of fullerene-based nanocars

    , Article Scientia Iranica ; Volume 25, Issue 3F , 2018 , Pages 1835-1848 ; 10263098 (ISSN) Nemati, A ; Meghdari, A ; Nejat Pishkenari, H ; Sohrabpour, S ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    The rotational and translational motions of nanocars and nanotrucks as well as their motion regimes at different temperatures are investigated. In recent years, few similar types of molecular machines have been simulated. In contrast to previous studies, which have used the Rigid-Body Molecular Dynamics (RBMD) method, an all-atom model and classic atomistic dynamics have been employed in this paper to achieve better accuracy. Our results demonstrated that the exibility of the chassis and its attachment to the gold surface played an important role in the motion of a nanocar. In fact, a heavier and more exible nanocar chassis reduces its speed compared to a nanotruck. In addition, the results... 

    Friction factor and nusselt number in annular flows with smooth and slotted surface

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; 2018 ; 09477411 (ISSN) Nouri Borujerdi, A ; Erfanian Nakhchi, M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    The purpose of this experimental work is to study the effect of slot depth to width ratio, rotational motion and inlet velocity on friction factor and Nusselt number in an annular flow between two concentric cylinders with smooth and slotted surface. The heated outer surface is stationary and the unheated inner one is rotating. This configuration is popular in industrial applications such as internal air system of gas turbine engines, cooling of rotating machinery, techniques of chemical vapor deposition and solidification of pure metals. The results show that the ratio of average slotted surface friction factor to that of the smooth one enhances by increasing the slot depth to width ratio... 

    Workspace analysis of a three dof cable-driven mechanism

    , Article Journal of Mechanisms and Robotics ; Volume 1, Issue 4 , 2009 , Pages 1-7 ; 19424302 (ISSN) Alikhani, A. R ; Behzadipour, S ; Sadough Vanini, A ; Alasty, A ; Sharif University of Technology
    2009
    Abstract
    A cable-driven mechanism based on the idea of BetaBot (2005, "A New Cable-Based Parallel Robot With Three Degrees of Freedom, " Multibody Syst. Dyn., 13, pp. 371-383) is analyzed and geometrical description of its workspace boundary is found. In this mechanism, the cable arrangement eliminates the rotational motions leaving the moving platform with three translational motions. The mechanism has potentials for large scale manipulation and robotics in harsh environments. A detailed analysis of the tensionable workspace of the mechanism is presented. The mechanism, in a tensionable position, can develop tensile forces in all cables to maintain its rigidity under arbitrary external loading. A... 

    Friction factor and nusselt number in annular flows with smooth and slotted surface

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 55, Issue 3 , 2019 , Pages 645-653 ; 09477411 (ISSN) Nouri Borujerdi, A ; Erfanian Nakhchi, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The purpose of this experimental work is to study the effect of slot depth to width ratio, rotational motion and inlet velocity on friction factor and Nusselt number in an annular flow between two concentric cylinders with smooth and slotted surface. The heated outer surface is stationary and the unheated inner one is rotating. This configuration is popular in industrial applications such as internal air system of gas turbine engines, cooling of rotating machinery, techniques of chemical vapor deposition and solidification of pure metals. The results show that the ratio of average slotted surface friction factor to that of the smooth one enhances by increasing the slot depth to width ratio... 

    Optimal coupled spacecraft rendezvous and docking using multi-objective optimization

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 5 , July , 2010 , Pages 299-309 ; 9780791849194 (ISBN) Moradi, R ; Pourtakdoust, S. H ; Kamyar, R ; ASME Turkey Section ; Sharif University of Technology
    2010
    Abstract
    Spacecraft rendezvous and docking are two processes in which a chaser pursues and meets a leader spacecraft in order to perform several mission based tasks. Although in some preliminary design analysis, these two operations may be pursued independently there could be circumstances in which the spacecraft trajectory and attitudes are coupled and interdependent. The present study is based on the presumption that the often independent translational and rotational motions of the spacecraft are coupled as a result of thrust misalignment. So the thrusters not only contribute to the rendezvous translational motion, but also affect the docking reorientation maneuver through their disturbing effects.... 

    Actuator failure-tolerant control of an all-thruster satellite in coupled translational and rotational motion using neural networks

    , Article International Journal of Adaptive Control and Signal Processing ; 2018 ; 08906327 (ISSN) Tavakoli, M. M ; Assadian, N ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    The nonlinear model predictive control (MPC) approach is used to control the coupled translational-rotational motion of an all-thruster spacecraft when one of the actuators fails. In order to model the dynamical response of the spacecraft in MPC, instead of direct integration, a neural network (NN) model is utilized. This model is built of a static NN, followed by a dynamic NN. The static NN is used to find the changes of the mapping of “the demanded forces to the thrusters” and “the real torques/forces produced by the remaining thrusters” after the failure occurrence through online training. In this manner, the effect of failed thruster on the dynamics can be found and the need for... 

    Construction equipment collision-free path planning using robotic approach

    , Article ISARC 2018 - 35th International Symposium on Automation and Robotics in Construction and International AEC/FM Hackathon: The Future of Building Things, 20 July 2018 through 25 July 2018 ; 2018 Kayhani, N ; Taghaddos, H ; Behzadipour, S ; Arcadis; Autodesk; et al.; Topcon; VHV Versicherungen; ZPP German Engineering ; Sharif University of Technology
    International Association for Automation and Robotics in Construction I.A.A.R.C)  2018
    Abstract
    Path planning is crucial in constructability analysis and heavy construction equipment scheduling, particularly in industrial plants. The main purpose of construction equipment path planning is devising the shortest path between its initial and aimed location. This suggested path is supposed to be safe, and collision-free. The current planning practice, even in industrial projects whose sites are extremely congested, is manual based on the expert judgment. Thus, this sophisticated manual process is not only prone to errors, but also time-consuming. This research presents an automated path planning approach based on an obstacle avoidance technique in robotics to support the decision-making... 

    Predictive fault-tolerant control of an all-thruster satellite in 6-DOF motion via neural network model updating

    , Article Advances in Space Research ; Volume 61, Issue 6 , March , 2018 , Pages 1588-1599 ; 02731177 (ISSN) Tavakoli, M. M ; Assadian, N ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The problem of controlling an all-thruster spacecraft in the coupled translational-rotational motion in presence of actuators fault and/or failure is investigated in this paper. the nonlinear model predictive control approach is used because of its ability to predict the future behavior of the system. The fault/failure of the thrusters changes the mapping between the commanded forces to the thrusters and actual force/torque generated by the thruster system. Thus, the basic six degree-of-freedom kinetic equations are separated from this mapping and a set of neural networks are trained off-line to learn the kinetic equations. Then, two neural networks are attached to these trained networks in...