Loading...
Search for: salt-rejections
0.005 seconds

    Water desalination by charged multilayer graphene membrane: A molecular dynamics simulation

    , Article Journal of Molecular Liquids ; Volume 355 , 2022 ; 01677322 (ISSN) Mortazavi, V ; Moosavi, A ; Nouri Borujerdi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Graphene, due to its unique excellent properties, is proposed as a developing method with high efficiency compared to classical water desalination methods. In this regard, charging the membrane is considered a promising and effective approach to enhance the performance of the graphene membrane. In this research, by using molecular dynamics simulations, the water desalination by charged multilayer graphene is evaluated and the influence of electric charge amount and geometric parameters, including the pore diameter and the interlayer distance, are investigated. According to the results, the multilayer nanoporous graphene with 16.35 Å pore diameter, in which the electric charge is distributed... 

    Enhancing water desalination in graphene-based membranes via an oscillating electric field

    , Article Desalination ; Volume 495 , December , 2020 Mortazavi, V ; Moosavi, A ; Nouri Borujerdi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Water desalination methods on the basis of newly developed graphene-based membrane have been introduced as a more efficient alternative for the conventional water purification technologies such as classical thermal desalination and reverse osmosis (RO). However, the increase of water permeation rate and ion rejection are still the main subjects in this field. In this study, a new method based on using oscillating electric field is proposed to improve the performance of nanoporous graphene. The effects of the amplitude and oscillation frequency of the electric field and the pore size of the membrane on the water permeation and salt rejection are studied by conducting molecular dynamics... 

    Investigation of the Influence of Charge and External Field on Desalination by Carbon Nanostructures Using Molecular Dynamics Simulation

    , Ph.D. Dissertation Sharif University of Technology Mortazavi, Vahid Reza (Author) ; Moosavi, Ali (Supervisor) ; Nouri-Borujerdi, Ali (Co-Supervisor)
    Abstract
    Membrane filtration systems are one of the most widely used and effective methods for desalination of saline water in the seas and oceans and treatment of industrial and domestic effluents in order to provide the fresh water resources needed for human survival on the earth and also meet the needs of various industries. The low efficacy of the traditional technologies necessitates the introduction of novel desalination methods. For this purpose, carbon-based membranes have been proposed as high-performance membranes because of their high mechanical strength, ultrafast permeation, and controllable pore size. In this study, by conducting molecular dynamics simulations, the effects of electric... 

    Effect of electromagnetic field on membrane fouling in reverse osmosis process

    , Article Desalination ; Volume 395 , 2016 , Pages 41-45 ; 00119164 (ISSN) Rouina, M ; Kariminia, H. R ; Mousavi, S. A ; Shahryari, E ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    In the present study, the effect of electromagnetic field on the salt and water transport and reduction of carbonate deposit during reverse osmosis desalination was investigated. The electromagnetic field was generated by AC current through a solenoid wound around the membrane separation module. The current intensity and frequency was 25 A and 50 Hz, respectively. Experiments were conducted using CaCO3 solution at the concentration of 5.5 mmol/L. For comparison purposes, desalination by the membrane, in the presence and absence of an electromagnetic field was conducted. While the desalination process temperature was kept constant, the product temperature increased by less than 2 °C when the... 

    Ultrahigh permeable C2N-inspired graphene nanomesh membranes versus highly strained c2n for reverse osmosis desalination

    , Article Journal of Physical Chemistry B ; Volume 123, Issue 41 , 2019 , Pages 8740-8752 ; 15206106 (ISSN) Fakhraee, M ; Akhavan, O ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    The reverse osmosis (RO) desalination capability of hydrogenated and hydroxylated graphene nanomesh membranes (GNMs) inspired by the morphology of carbon nitride (C2N) has been studied by using molecular dynamics simulation. As an advantage, water permeance of the GNMs is found to be several orders of magnitude higher than that of the available RO filters and comparable with highly strained C2N (S-C2N) as follows: 6,6-H,OH > 12-H > S-C2N > 5,5-H,OH > 10-H. The reverse order is found for salt rejection, regardless of S-C2N. The hydrophilic character of the incorporated -OH functional group is believed to be responsible for linking the water molecules in feed and permeate sides via the... 

    Zwitterion-functionalized MIL-125-NH2-based thin-film nanocomposite forward osmosis membranes: towards improved performance for salt rejection and heavy metal removal

    , Article New Journal of Chemistry ; Volume 46, Issue 31 , 2022 , Pages 15205-15218 ; 11440546 (ISSN) Bayrami, A ; Bagherzadeh, M ; Navi, H ; Nikkhoo, M ; Amini, M ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    In the current study, thin-film nanocomposite membranes (TFN-Mx) based on a zwitterion-functionalized metal-organic framework (MOF) have been developed for the forward osmosis (FO) salt-water separation process. The active polyamide layer was formed through the interfacial polymerization of the m-phenylenediamine aqueous phase (with or without the presence of MIL-125-NH-CC-Cys) and the trimesoyl chloride organic phase. In comparison with the results from the surface of the unmodified membrane, a nanofiller-incorporated TFN-M0.10 membrane represents a smoother and more wettable surface that collaborates synergically to enhance the membrane antifouling ability. Among the examined membranes,... 

    On comparison of three multi-feed osmotic-mediation-based configurations for brine management: Techno-economic optimization and exergy analysis

    , Article Desalination ; Volume 525 , 2022 ; 00119164 (ISSN) Beni, A. N ; Ghofrani, I ; Moosavi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    This study aims at analyzing the performance of three units known as low salt rejection reverse osmosis (LSRRO), split-feed counterflow reverse osmosis (SF-CFRO), and split-brine counterflow reverse osmosis (SB-CFRO) and implementing them in a modified multi-stage multi-feed counter-current membrane with cascade recycle for dewatering hypersaline streams to the salinity appropriate for crystallizers' feed. Exergy and primitive pinch analysis showed that dewatering is limited in SF-CFRO as the permeate inlet dictates the maximum salinity difference at the pinch point as well as high frictional pressure loss in the permeate channel. SB-CFRO and LSRRO units can reach high salinities by...