Loading...
Search for: scanning-electrons
0.017 seconds
Total 1201 records

    Theoretical model for evaluating the threshold reduction in roll bonding of Al/Al 2O 3/Al laminations

    , Article Metals and Materials International ; Volume 18, Issue 5 , 2012 , Pages 827-832 ; 15989623 (ISSN) Rezayat, M ; Akbarzadeh, A ; Sharif University of Technology
    Springer  2012
    Abstract
    Roll bonding is the most important stage of the accumulative roll bonding process, which is used to produce high strength composites. The presence of a particle layer at the interface alters the bonding condition and increases the threshold reduction for the commencement of bonding. In this study, the bonding mechanism in presence of powder at the interface is analyzed and a theoretical model is proposed to predict the required threshold reduction in warm roll bonding of commercially pure aluminum sheets as a function of amount of alumina particles at the interface. The model considers the rolling parameters and the effect of amount and size of particles by defining some constants, which are... 

    Roll bonding behaviour of Al-3003/Al-4043 and Al-3003/Zn sheets

    , Article Metals and Materials International ; Volume 17, Issue 4 , 2011 , Pages 665-670 ; 15989623 (ISSN) Movahedi, M ; Kokabi, A. H ; Madaah Hosseini, H. R ; Kiani, M ; Sharif University of Technology
    Abstract
    In the present study, the roll bonding behaviour of Al-3003/Al-4043 and Al-3003/Zn sheets were compared. The bi-layer sheets were produced by a roll bonding process at different reductions in thickness and rolling temperatures. The joint strengths of the sheets were evaluated by peel and bend testing before and after supplemental annealing treatment. The peeled surfaces were examined using a scanning electron microscope. The results indicated that the Al-3003/Al-4043 sheets were bonded with higher joint strength and lower threshold reductions in thickness with respect to the Al-3003/Zn sheets. In contrast to the Al-3003/Zn sheets, significant improvement was observed in the joint strength of... 

    A study of mechanical and microstructures properties of autoclaved aerated concrete containing nano-graphene

    , Article Journal of Building Engineering ; Volume 43 , 2021 ; 23527102 (ISSN) Seddighi, F ; Pachideh, G ; Salimbahrami, S. B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In recent years, the autoclaved aerated concrete (AAC) has been widely used in the building construction industry, especially for construction of infill walls. However, the AAC suffers from several drawbacks such as low compressive and tensile strength, high water absorption as well as insufficient resistance against impacts. To address such issues, this study evaluates the mechanical properties of the AAC blocks in which, the cement has been replaced with nano-graphene. For this purpose, various replacement ratios (0.2, 0.4, and 0.8) were selected and different tests such as compressive and tensile strength (cylindrical specimens with the size of 10 × 20 cm), impact resistance and water... 

    Investigation and Synthesis of Zn-Ni-Mn Three Cationic Electrophosphate Coating

    , M.Sc. Thesis Sharif University of Technology Alimi, Zahra (Author) ; Ghorbani, Mohamad (Supervisor)
    Abstract
    The purpose of this study was to create a three-cationic electro phosphate coating of zinc-nickel-manganese by cathodic method and to investigate the effect of operating variables on the properties of zinc-nickel-manganese tri-cationic electro phosphate coating. Hence, the effects of variables such as coating acidity, coating thickness, coating temperature, coating time and concentration of manganese were studied in the bath on the properties such as coating morphology, corrosion resistance, coating thickness. Coating morphology was characterized by scanning electron microscopy and corrosion resistance by polarization test. The pH values of 1.4, 1.8, 2 and 2.2 were selected, and the results... 

    Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel

    , Article European Polymer Journal ; Volume 44, Issue 4 , 2008 , Pages 1209-1216 ; 00143057 (ISSN) Pourjavadi, A ; Ayyari, M ; Amini Fazl, M. S ; Sharif University of Technology
    2008
    Abstract
    A novel biopolymer-based hydrogel composite was synthesized through chemical crosslinking by graft copolymerization of partially neutralized acrylic acid onto the hydrolyzed collagen. The Taguchi method, a robust experimental design, was employed for the optimization of the synthesis based on the swelling capacity of the hydrogels. This method was applied for the experiments and standard L16 orthogonal array with five factors and four levels. In the synthesis of the composite superabsorbent, N,N′-methylene bisacrylamide (MBA) as crosslinker, ammonium persulfate (APS) as initiator, acrylic acid (AA) as monomer, neutralization percent (NU), and collagen/kaolin weight ratio were used as... 

    Structural changes and surface activities of ethylbenzene dehydrogenation catalysts during deactivation

    , Article Applied Catalysis A: General ; Volume 326, Issue 2 , 2007 , Pages 143-151 ; 0926860X (ISSN) Baghalha, M ; Ebrahimpour, O ; Sharif University of Technology
    2007
    Abstract
    Industrial dehydrogenation of ethylbenzene to styrene is performed using potassium-promoted iron oxide catalyst. Many attempts have been made to understand the deactivation mechanism of the catalyst based on the chemical differences between the fresh and used catalysts. In the present work, in addition to the effect of chemical changes, the effect of structural changes of the internal areas on the catalyst activity was investigated. A fresh and used commercial catalyst from an industrial reactor which had been continuously used for two years under severe conditions (LHSV = 1 h-1, T = 610 °C, mass ratio of steam to ethylbenzene = 1.2, P = 1.2 atm) was studied. Nitrogen adsorption, Hg... 

    Sorption kinetics of oil spill by sorbent mineral material (expanded per lite)

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Safekordi, A. A ; Alihosseini, A ; Bastani, D ; Taghikhani, V ; Ordookhani, G ; Sharif University of Technology
    2006
    Abstract
    The present study examined the sorption capacity and sorption kinetics of four-type perlite for oil spills clean up. These four types are different on their porous space, expansion ability and special surface area. The tests were done both in static and dynamic methods. Experiments showed that the perlite spread on oil spill rapidly and floated on the surface of oil spill because of its low density (80-180 kg/m3). Scanning Electron Micrograph (SEM) of a typical structure of expanded perlite showed that it of high porous space. Sorption kinetic of oil spill into porous expanded perlite was evaluated by weight increase of crude oil with sorption time. According to kinetic study sorption of oil... 

    Co surface modification by bias sputtering in Cu/Co(Vb)/NiO/ Si(100) magnetic multilayer structures

    , Article Physica Status Solidi C: Conferences ; Volume 1, Issue 7 , 2004 , Pages 1744-1747 ; 16101634 (ISSN) Moshfegh, A. Z ; Sangpour, P ; Sharif University of Technology
    2004
    Abstract
    To investigate the Ta/Co/Cu/Co/NiO/Si(100) spin valve structure, fabrication and characterization of the Cu/Co/NiO/Si(100) system was studied for further understanding the structure. The system was grown by employing combinative DC sputtering-evaporation technique. Nickel oxide with a thickness of about 30 nm was deposited on Si(100) substrate using thermal evaporation technique.The cobalt film, then, with a thickness of about 3 nm was grown by DC sputtering under various applied negative bias voltages ranging from 0 to - 80 V. The optimum bias voltage (Vb = -60 V) for the growth of Co layer was determined by atomic force microscopy (AFM), four-point probe sheet measurement (Rs) and scanning... 

    Fabrication of BSCCO thin films using sputtering technique

    , Article Physica Status Solidi C: Conferences ; Volume 1, Issue 7 , 2004 , Pages 1895-1898 ; 16101634 (ISSN) Salamati, H ; Kameli, P ; Akhavan, M ; Sharif University of Technology
    2004
    Abstract
    Investigation of BSCCO 2223 phase formation in superconducting thin films of Bi-based cuprates deposited on MgO substrate is reported. A series of films were made by in situ dc-magnetron sputtering method and another series were made by ex situ rf-magnetron sputtering technique. Same target have been used in both technique. In the case of the ex situ method, the films were annealed for different period of time at 800°C, and in the case of in situ method, the films were deposited at different temperature substrate. The influence of annealing time and the temperature of the substrate on the quality and the phase formation for ex situ and in situ method have studied, respectively. The results... 

    A study on the cementitious mortars containing multi-walled carbon nanotubes and nanographene

    , Article Journal of Testing and Evaluation ; Volume 51, Issue 2 , 2022 ; 00903973 (ISSN) Pachideh, G ; Toufigh, V ; Sharif University of Technology
    ASTM International  2022
    Abstract
    In this paper, the effects of the multi-walled carbon nanotubes (MWCNTs) and nanographene (GP) on the mechanical performance of the cementitious mortars were investigated in different environments. Six mix designs were fabricated by considering the previous studies and exposed to potable water, acidic, and alkaline environments. The GP and MWCNTs partially replaced the cement with 0.25 %, 0.5 %, and 1 % of its weight. The standard mechanical tests, X-ray diffraction (XRD), and scanning electron microscope (SEM) analysis were performed on the specimens. The results indicated that including the MWCNTs and GP increases the compressive strength by 10 % and 20 % and similarly improves the tensile... 

    An electrospun magnetic nanocomposite for a facile micro-scaled analysis approach

    , Article Analytical Methods ; Vol. 6, issue. 15 , 2014 , Pages 5838-5846 ; ISSN: 17599660 Bagheri, H ; Roostaie, A ; Daliri, R ; Sharif University of Technology
    Abstract
    A magnetic polyurethane (PU) nanocomposite was synthesized by an electrospinning technique and applied for isolation and preconcentration of fluoxetine from aquatic and biological samples. The nanocomposite was electrospun using a PU polymer solution containing the dispersed magnetic nanoparticles. The magnetic properties of iron nanoparticles, along with the use of an electrospinning technique, led to the formation of a suitable sorbent toward isolation of fluoxetine. The magnetic PU nanofibers could be subsequently removed from the sample solution by applying a permanent magnet. The scanning electron microscopy (SEM) image of the magnetic PU nanofibers confirms that their diameters are in... 

    In situ preparation and property investigation of polypropylene/fumed silica nanocomposites

    , Article Polymer Composites ; Vol. 35, issue. 1 , January , 2014 , pp. 37-44 ; ISSN: 02728397 Azinfar, B ; Ahmad Ramazani, S. A ; Jafariesfad, N ; Sharif University of Technology
    Abstract
    We present the preparation of polypropylene (PP)/fumed silica (FS) nanocomposites via in situ polymerization in this article. The approach includes preparation and utilization of a bisupported Ziegler-Natta catalytic system in which magnesium ethoxide and FS are used as conjugate supports of the catalyst. Catalyst preparation and polymerization processes are carried out in the slurry phase and under argon atmosphere. Scanning electron microscopy images show a good dispersion of the FS throughout the PP matrix. Results from differential scanning calorimetry reveal that the crystallization temperature of prepared nanocomposites increases by increasing FS loading. Also, crystal content of... 

    Microstructural evolution and fracture behavior of friction-stir-welded Al-Cu laminated composites

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Vol. 45, issue. 1 , 2014 , pp. 361-370 Beygi, R ; Kazeminezhad, M ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook... 

    Activated layered manganese oxides with deposited nano-sized gold or silver as an efficient catalyst for epoxidation of olefins

    , Article RSC Advances ; Volume 3, Issue 46 , 2013 , Pages 24069-24074 ; ISSN: 20462069 Najafpour, M. M ; Amini, M ; Sedigh, D. J ; Rahimi, F ; Bagherzadeh, M ; Sharif University of Technology
    2013
    Abstract
    Activated layered manganese oxides with deposited nano-sized gold or silver were synthesized and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectrometry, atomic absorption spectroscopy and energy-dispersive X-ray mapping. Here, we report that Au or Ag nanoparticles deposited on layered Mn oxides improve the catalytic activity of the Mn oxides toward the epoxidation of olefins in the presence of H2O2 and NaHCO3  

    A very simple method to synthesize nano-sized manganese oxide: An efficient catalyst for water oxidation and epoxidation of olefins

    , Article Dalton Transactions ; Volume 41, Issue 36 , Jul , 2012 , Pages 11026-11031 ; 14779226 (ISSN) Najafpour, M. M ; Rahimi, F ; Amini, M ; Nayeri, S ; Bagherzadeh, M ; Sharif University of Technology
    RSC  2012
    Abstract
    Nano-sized particles of manganese oxides have been prepared by a very simple and cheap process using a decomposing aqueous solution of manganese nitrate at 100 °C. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction spectrometry have been used to characterize the phase and the morphology of the manganese oxide. The nano-sized manganese oxide shows efficient catalytic activity toward water oxidation and the epoxidation of olefins in the presence of cerium(iv) ammonium nitrate and hydrogen peroxide, respectively  

    Monodispersed polymeric nanoparticles fabrication by electrospray atomization

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 61, Issue 8 , 2012 , Pages 611-626 ; 00914037 (ISSN) Zarrabi, A ; Vossoughi, M ; Alemzadeh, I ; Chitsazi, M. R ; Sharif University of Technology
    2012
    Abstract
    The feasibility of fabricating relatively monodispersed polymeric nanoparticles by the electrospray method in a modified electrospray set-up is demonstrated in this study. The polymer solution is electrosprayed in the single cone-jet regime through a nozzle. After solvent evaporation, during which particles pave from the nozzle to collector, the fabricated nanoparticles can be collected in deionized water, which plays the role of surfactant for particles, not allowing them to aggregate. The results of scanning electron microscope and dynamic light scattering analysis clearly confirm the fabrication of monodispersed spherical polymeric nanoparticles with diameter range from 80 to 120nm with... 

    The Pt/Ni modified TiO 2 nanotubes and its catalytic activity toward glucose

    , Article ECS Transactions, 1 May 2011 through 6 May 2011 ; Volume 35, Issue 35 , May , 2011 , Pages 63-69 ; 19385862 (ISSN) ; 9781607682950 (ISBN) Mahshid, S. S ; Mahshid, S ; Ghahremaninezhad, A ; Dolati, A ; Ghorbani, M ; Luo, S ; Yang, L ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    The catalytic activity of Pt/Ni/TiO 2 nanotubes electrode toward glucose has been studied. Fabrication of Pt/Ni nanostructures was done in a single-bath solution through electrochemical pulse method by changing the deposition potential between -0.3 and -4 V vs. SCE, respectively. The resulting modified electrode represented high conductivity due to the effective presence of metallic components and uniform surface area caused by dispersion of Pt and Ni nanostructures. The scanning electron microscopy images also confirmed that a large amount of metals colonies were well-dispersed at the edge of the TiO 2 nanotubes. In addition, the Pt/Ni TiO 2 nanotubes modified electrode exhibited an... 

    Investigation of the Shaft Failure Connected to Extruder

    , Article Journal of Failure Analysis and Prevention ; Volume 15, Issue 6 , 2015 , Pages 775-781 ; 15477029 (ISSN) Pelaseyed, S. S ; Mashayekhi, F ; Movahedi-Rad, A ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    In this study, the failure analysis of a shaft of a unit, which had been failed during the service, was studied. This shaft was welded to the blades, and their chemical compositions were determined by spectroscopy method. In order to determine the root cause of failure and contribution factors, different investigation methods including visual examination, optical microscopy and scanning electron microscope analysis, and hardness test were carried out. It was concluded that the shaft was failed due to fatigue. The failure was caused by improper welding of blades to the shaft. At the end, in order to prevent or decelerate such failure, some recommended remedies were suggested  

    W-15 wt%Cu nano-composite produced by hydrogen-reduction/sintering of WO3-CuO nano-powder

    , Article International Journal of Refractory Metals and Hard Materials ; Volume 28, Issue 3 , 2010 , Pages 441-445 ; 02634368 (ISSN) Ahmadi, E ; Malekzadeh, M ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    A two-stage hydrogen-reduction/sintering procedure was used to synthesize W-15 wt%Cu nano-composite tablets. Hydrogen-reduction was carried out at 600, 650, 700 and 750 °C for 15-90 min and sintering was performed at 1100, 1150, 1200 and 1250 °C for 60 min. Morphology and grain size of the products were rigorously investigated by scanning electron microscope (SEM), X-ray diffractometer (XRD) and nano-particle Zeta-sizer. Maximum consolidation of the nano-composite product was achieved at 1200 °C. Hydrogen-reduction at 700 °C for 90 min showed an average particle size of ∼72.9 nm. Total reduction was achieved at higher temperatures and longer times. The mixture had a homogeneous structure... 

    Effect of RGO/Zn:XCd1- xS crystalline phase on solar photoactivation processes

    , Article RSC Advances ; Volume 6, Issue 52 , 2016 , Pages 46282-46290 ; 20462069 (ISSN) Moradlou, O ; Tedadi, N ; Banazadeh, A ; Naseri, N ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    A series of reduced graphene oxide/ZnxCd1-xS (RGO/ZnxCd1-xS) nanocomposites (0 < x < 1) with different ratios of Zn/Cd were synthesized via a facile hydrothermal route under optimized experimental conditions and were carefully characterized by various techniques. Because very little is known about the morphology, specific surface area, and crystal phase effects of RGO/ZnxCd1-xS crystals on their photoresponsivity, field-emission scanning electron microscopy (FE-SEM), BET surface area analysis and X-ray diffraction (XRD) data were studied to investigate their effects on photoactivity. Based on the results, a crystal phase transition from a cubic phase in RGO/Zn0.9Cd0.1S to a hexagonal...