Loading...
Search for: scattering-mechanisms
0.011 seconds

    Influence of photoanode architecture on light scattering mechanism and device performance of dye-sensitized solar cells using TiO2 hollow cubes and nanoparticles

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 86 , May , 2018 , Pages 81-91 ; 18761070 (ISSN) Sarvari, N ; Mohammadi, M. R ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2018
    Abstract
    Herein, we report the impact of light scattering mechanism on photovoltaic and photoelectrochemical performance of dye-sensitized solar cell (DSC) devices composed of TiO2 nanoparticles and hollow cubes. DSCs are designed by two different light scattering modes (i.e., mode I in form of single layer electrode containing nanoparticles and hollow cubes and mode II in the form of double layer electrode comprising active and scattering layers made of nanoparticles and mixtures of nanoparticles and hollow cubes, respectively). The synthesized anatase-TiO2 hollow cubes (200–400 nm) and nanoparticles (15–30 nm) are employed to enhance the optical length and light harvesting of photoanodes,... 

    Accurate numerical model for surface scattering, grain boundary scattering, and anomalous skin effect of copper wires

    , Article Proceedings - Winter Simulation Conference ; January , 2013 , Pages 209-210 ; 08917736 (ISSN) ; 9781467348416 (ISBN) Abbaspour, E ; Sarvari, R ; Akbarzadeh, A ; Rostami, M ; Sharif University of Technology
    2013
    Abstract
    In this paper we have studied both DC size effect and anomalous skin effect caused by surface and grain boundary scattering on the resistivity of Cu thin films by a Monte Carlo method. Contribution of each scattering mechanism and the interaction between them are analyzed separately. A simple and fast numerical recursive method is also introduced to guess the structure of electric field and distribution of current inside the thin film to evaluate the surface resistance instead of complicated analytical formulas  

    Dynamo effect and turbulence in hydrodynamic weyl metals

    , Article Physical Review Letters ; Volume 121, Issue 17 , 2018 ; 00319007 (ISSN) Galitski, V ; Kargarian, M ; Syzranov, S ; Sharif University of Technology
    American Physical Society  2018
    Abstract
    The dynamo effect is a class of macroscopic phenomena responsible for generating and maintaining magnetic fields in astrophysical bodies. It hinges on the hydrodynamic three-dimensional motion of conducting gases and plasmas that achieve high hydrodynamic and/or magnetic Reynolds numbers due to the large length scales involved. The existing laboratory experiments modeling dynamos are challenging and involve large apparatuses containing conducting fluids subject to fast helical flows. Here we propose that electronic solid-state materials - in particular, hydrodynamic metals - may serve as an alternative platform to observe some aspects of the dynamo effect. Motivated by recent experimental... 

    Efficient dye-sensitized solar cells based on carbon-doped TiO2 hollow spheres and nanoparticles

    , Article Journal of Materials Science: Materials in Electronics ; Volume 26, Issue 11 , 2015 , Pages 8863-8876 ; 09574522 (ISSN) Tabari Saadi, Y ; Mohammadi, M. R ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Different structures of TiO2 photoelectrodes are fabricated with various arrangement modes of the layers. TiO2 nanoparticles, synthesized by stabilizing agent free non-hydrolytic sol–gel method, are employed as the under layer, whereas carbon-doped TiO2 hollow spheres, prepared by hydrothermally grown carbon template, are used as the scattering layer of solar cells. The nanoparticles (22 nm) have anatase structure, while 300–700 nm hollow spheres show mixtures of anatase and rutile phases. X-ray photoelectron spectroscopy confirms that carbon is doped into TiO2 hollow spheres, resulting in a decrease in band gap energy in the range 2.96–3.13 eV compared with 3.04 eV band gap energy for the... 

    Improved photon to current conversion in nanostructured TiO2 dye-sensitized solar cells by incorporating cubic BaTiO3 particles deliting incident

    , Article Solar Energy ; Volume 132 , 2016 , Pages 1-14 ; 0038092X (ISSN) Asgari Moghaddam, H ; Mohammadi, M. R ; Seyed Reyhani, S. M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Different structures of dye-sensitized solar cells (DSCs) were fabricated with various compositions and arrangement modes of the photoanodes. The solvothermally grown TiO2 nanoparticles and sol-gel derived spherical TiO2 and BaTiO3 particles were employed as the active and scattering layers of DSCs. TiO2 nanoparticles and spherical particles had pure anatase structure with particle size of 15-30 nm and 200-400 nm, respectively, whereas 300-800 nm BaTiO3 particles showed cubic perovskite structure. The efficiency improvement of mono-layer cells made of TiO2 nanoparticles (i.e., 7.22%) was achieved by light harvesting mechanism. Further enhancement of photovoltaic performance was achieved by...