Loading...
Search for: screen-printed-electrode
0.007 seconds

    Amplified electrochemical DNA sensor based on polyaniline film and gold nanoparticles

    , Article Electroanalysis ; Volume 25, Issue 6 , 2013 , Pages 1373-1380 ; 10400397 (ISSN) Saberi, R. S ; Shahrokhian, S ; Marrazza, G ; Sharif University of Technology
    2013
    Abstract
    In this work, an electrochemical DNA biosensor, based on a dual signal amplified strategy by employing a polyaniline film and gold nanoparticles as a sensor platform and enzyme-linked as a label, for sensitive detection is presented. Firstly, polyaniline film and gold nanoparticles were progressively grown on graphite screen-printed electrode surface via electropolymerization and electrochemical deposition, respectively. The sensor was characterized by scanning electron microscopy (SEM), cyclic voltammetry and impedance measurements. The polyaniline-gold nanocomposite modified electrodes were firstly modified with a mixed monolayer of a 17-mer thiol-tethered DNA probe and a spacer thiol,... 

    Rapid sol gel synthesis of BaFe12O19 nanoparticles: An excellent catalytic application in the electrochemical detection of tramadol in the presence of acetaminophen

    , Article Microchemical Journal ; Volume 156 , 2020 Bagherinasab, Z ; Beitollahi, H ; Yousefi, M ; Bagherzadeh, M ; Hekmati, M ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    The present study reports synthesis of BaFe12O19 nanoparticles by sol gel technique followed by its characterization using Energy dispersive X-ray spectroscopy (EDS), X-Ray diffraction (XRD), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM) analysis, and Fourier-transform infrared spectroscopy (FTIR). The BaFe12O19 nanoparticles have been applied to construct a modified graphite screen-printed electrode (GSPE). BaFe12O19/GSPE has been applied as a working electrode in the analysis of tramadol and acetaminophen by voltammetric techniques. The BaFe12O19/GSPE showed a good selectiveness for analysis of tramadol in the presence of acetaminophen with the... 

    Optimized Pt Coating for High Charge Transfer- High Transparency Cathodes of Dye Sensitized Solar Cell

    , M.Sc. Thesis Sharif University of Technology Mashhoun, Sara (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    Counter electrode of dye sensitized solar cell is prepared by deposition of a thin catalytic layer onto a conducting substrate and is responsible for reduction of iodide/triiodide redox electrolyte. Conventionally, counter electrode is made of platinum.
    Depending on the method of deposition, the thickness of Pt layer varies. The Pt layer may be so thick that it acts as reflector and returns the incident light back to the cell. In this case, large amount of Pt is used and a rise in cost is been made, but only the Pt particles in the interface of counter electrode/electrolyte take part in the reduction reaction.
    The aim of this project is optimization of making a counter electrode,... 

    Fabrication of Dye-Sensitized Solar Cell Modules by Screen-Printing

    , M.Sc. Thesis Sharif University of Technology Chalangar, Ebrahim (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    Dye-sensitized solar cells (DSSCs) are emerging as low-cost alternatives to conventional, solid-state, silicon solar cells. A porous network of a nanosize semiconductor material with a wide band-gaps usually TiO2, serves as charge transport medium. A monolayer of dye is chemically adsorbed on this material. Photoexcitation of dye causes injection of electrons into the conduction band of TiO2 from where they diffuse towards a transparent conducting oxide (TCO) substrate. The dye is regenerated through receiving electrons from a redox couple dissolved in the electrolyte. After passing through a desired load, the electrons enter the cell through a counter electrode to reduce the redox ions and... 

    Fabrication of Applied Electrode Materials based on Metal-Organic Frameworks to Design Non-Enzymatic Electrochemical Sensing Platforms for Measuring of Glucose in Physiological Samples

    , M.Sc. Thesis Sharif University of Technology Ezzati, Milad (Author) ; Shahrokhian Dehkordi, Saeed (Supervisor)
    Abstract
    In the first work, the method of direct growth was used to grew MOFs based on cobalt, as electroactive centers, for preparing electrochemical sensors for the determination of glucose. In comparison to most of the electrochemical sensing platforms based on MOFs for determining glucose, which suffer from some disadvantages like time-consuming synthesis procedures and using hazardous organic solvents, the proposed in situ growth method is much faster and no need to toxic organic solvents. Herein, cobalt-based MOFs were grown on the surface of the reduced graphene oxide modified glassy carbon electrode by the direct and rapid conversion of cobalt hydroxide nanosheets intermediates. The... 

    Smart chip for visual detection of bacteria using the electrochromic properties of polyaniline

    , Article Analytical Chemistry ; Volume 91, Issue 23 , 2019 , Pages 14960-14966 ; 00032700 (ISSN) Ranjbar, S ; Farahmand Nejad, M. A ; Parolo, C ; Shahrokhian, S ; Merkoci, A ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Finding fast and reliable ways to detect pathogenic bacteria is crucial for addressing serious public health issues in clinical, environmental, and food settings. Here, we present a novel assay based on the conversion of an electrochemical signal into a more convenient optical readout for the visual detection of Escherichia coli. Electropolymerizing polyaniline (PANI) on an indium tin oxide screen-printed electrode (ITO SPE), we achieved not only the desired electrochromic behavior but also a convenient way to modify the electrode surface with antibodies (taking advantage of the many amine groups of PANI). Applying a constant potential to the PANI-modified ITO SPE induces a change in their... 

    Direct decoration of carbon nanohorns with binary nickel-cobalt sulfide nanosheets towards non-enzymatic glucose sensing in human fluids

    , Article Electrochimica Acta ; Volume 428 , 2022 ; 00134686 (ISSN) Kachouei, M. A ; Hekmat, F ; Wang, H ; Amaratunga, G. A. J ; Unalan, H. E ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A highly controllable, green, and rapid strategy is demonstrated for fabricating of highly sensitive non-enzymatic glucose sensing platforms. Carbon nanohorns (CNHs) were decorated onto the screen-printed electrodes. Binary nickel-cobalt sulfide (NiCo-S) nanosheets (NSs) were then deposited on CNH-casted electrodes by a facile and scalable method. Following detailed structural characterization and the electrocatalytic activity of the fabricated NiCo-S/CNH electrodes towards electro-oxidation of glucose was examined in detail. The proposed electrodes operated within two distinct linear dynamic ranges of 0.001- 0.330 mM and 0.330 - 4.53 mM with sensitivities of 1842 µA.mM−1.cm−2 and 854... 

    Design and Fabrication of Advanced Electrode Materials Based on Metal-organic Frameworks and Double Layered Hydroxides Using Hollow Copper Hydroxide Nanotubes Scaffold; Application to Nonenzymatic Glucose Sensor

    , M.Sc. Thesis Sharif University of Technology Khaki Sanati, Elnaz (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    One of the remarkable subject in advanced electrochemistry is, design and architecting new advanced materials with new electrochemical capabilities. One of the notable capabilities is electrocatalysis. Extensive researches are carrying out into the design and preparation of electrocatalyst materials to take advantage of these materials in fabrication of electrochemical sensors and storage/conversion devices. In this field nonoporous materials attracted a lot of attentions due to their unique features. In order to make use of the nanoporous materials as the electrocatalysts, these materials must be fabricated into continuous supported thin films on the electrode surface, which is the... 

    Fabrication of a microdialysis-based nonenzymatic microfluidic sensor for regular glucose measurement

    , Article Sensors and Actuators, B: Chemical ; Volume 333 , 2021 ; 09254005 (ISSN) Najmi, A ; Saidi, M. S ; Shahrokhian, S ; Hosseini, H ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Microdialysis-based continuous glucose measuring systems are desirable candidates for accurate and biologically safe monitoring of glucose level in diabetic patients. However, it is necessary to improve these systems by utilizing highly reliable non-enzymatic sensors instead of enzymatic ones, while lowering the size and lessening the dialysis fluid consumption. Our purpose is to design an implantable integrated microfluidic device for regular nonenzymatic microdialysis-based glucose measurement. We report a novel nonenzymatic microfluidic glucose sensor based on Pt-Ni nanoparticles - multiwalled carbon nanotubes/screen-printed carbon electrode (Pt-Ni NPs-MWCNTs/SPE). Devised microfluidic... 

    Amperometric sulfide detection using Coprinus cinereus peroxidase immobilized on screen printed electrode in an enzyme inhibition based biosensor

    , Article Biosensors and Bioelectronics ; Volume 35, Issue 1 , 2012 , Pages 297-301 ; 09565663 (ISSN) Savizi, I. S. P ; Kariminia, H. R ; Ghadiri, M ; Roosta Azad, R ; Sharif University of Technology
    2012
    Abstract
    In the present work, an amperometric inhibition biosensor for the determination of sulfide has been fabricated by immobilizing Coprinus cinereus peroxidase (CIP) on the surface of screen printed electrode (SPE). Chitosan/acrylamide was applied for immobilization of peroxidase on the working electrode. The amperometric measurement was performed at an applied potential of -150. mV versus Ag/AgCl with a scan rate of 100. mV in the presence of hydroquinone as electron mediator and 0.1. M phosphate buffer solution of pH 6.5. The variables influencing the performance of sensor including the amount of substrate, mediator concentration and electrolyte pH were optimized. The determination of sulfide... 

    , Ph.D. Dissertation Sharif University of Technology Saberi, Reyhanesadat (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first part, preparation of different kinds of polypyrrole/carbon composites and their application for drug analysis are described. In the first work, A very sensitive electrochemical sensor constructed from a glassy carbon electrode modified with a layer-by-layer MWCNT/doped overoxidized polypyrrole (oppy/MWCNT /GCE) was used for the determination of acetaminophen (AC) in the presence of codeine and ascorbic acid (AA). In comparison to the bare glassy carbon electrode, a considerable shift in the peak potential together with an increase in the peak current was observed for AC on the surface of oppy/MWCNT/GCE, which can be related to the enlarged microscopic surface area of the... 

    Advanced on-site glucose sensing platform based on a new architecture of free-standing hollow Cu(OH)2 nanotubes decorated with CoNi-LDH nanosheets on graphite screen-printed electrode

    , Article Nanoscale ; Volume 11, Issue 26 , 2019 , Pages 12655-12671 ; 20403364 (ISSN) Shahrokhian, S ; Khaki Sanati, E ; Hosseini, H ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    The planned design of nanocomposites combined with manageable production processes, which can offer controllability over the nanomaterial structure, promises the practical applications of functional nanomaterials. Hollow core-shell nanostructure architectures represent an emerging category of advanced functional nanomaterials, whose benefits derived from their notable properties may be hampered by complicated construction processes, especially in the sensing domain. In this regard, we designed a highly porous three-dimensional array of hierarchical hetero Cu(OH)2@CoNi-LDH core-shell nanotubes via a quick, very simple, green, and highly controllable three-step in situ method; they were... 

    Yttrium hexacyanoferrate microflowers on freestanding three-dimensional graphene substrates for ascorbic acid detection

    , Article ACS Applied Nano Materials ; Volume 2, Issue 4 , 2019 , Pages 2212-2221 ; 25740970 (ISSN) Hatamie, A ; Rahmati, R ; Rezvani, E ; Angizi, S ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Recently, three-dimensional carbon nanostructures have attracted significant attention for biosensing applications. We have prepared highly porous three-dimensional graphene (3DG) structures (90% porosity) by template-assisted chemical vapor deposition technique and enhanced their electrocatalytic activity through in situ electrochemical deposition of rose-like yttrium hexacyanoferrate particles on their struts. The 3DG structure has an average channel size of ∼500 μm, and the microflowers have lateral sizes in the range of 2-10 μm. The performance of the 3DG-based electrode in efficient detection of ascorbic acid was investigated after transferring on a gold screen printed electrode (SPE).... 

    Nonenzymatic sweat-based glucose sensing by flower-like au nanostructures/graphene oxide

    , Article ACS Applied Nano Materials ; Volume 5, Issue 9 , 2022 , Pages 13361-13372 ; 25740970 (ISSN) Asen, P ; Esfandiar, A ; Kazemi, M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The development of a nonenzymatic glucose sensor working in real human body conditions through a noninvasive sampling approach has attracted considerable attention. Hence, this work focuses on the development of a new nonenzymatic glucose sensor based on flower-like Au nanostructures (F-AuNTs) and graphene oxide (GO) as a supporting matrix. The F-AuNTs-GO hybrid was synthesized by simple drop casting of the GO suspension onto the graphite sheet (GS) followed by electrodeposition of F-AuNTs on GO nanosheets at 3 V in a two-electrode system. The electrocatalytic activity of the F-AuNTs-GO/GS sensor toward glucose electrooxidation was initially evaluated in a 0.1 M buffer phosphate solution (pH... 

    In situ two-step preparation of 3D NiCo-BTC MOFs on a glassy carbon electrode and a graphitic screen printed electrode as nonenzymatic glucose-sensing platforms

    , Article ACS Sustainable Chemistry and Engineering ; Volume 8, Issue 38 , 2020 , Pages 14340-14352 Ezzati, M ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    In the present study, a rational two-step strategy is employed for the green, fast, very simple, and highly controllable synthesis of the bimetallic nickel-cobalt-based metal-organic frameworks (MOFs) on glassy carbon substrates by in situ transformation of nickel-cobalt-layered double hydroxide nanosheet (NiCo-LDHs NSs) intermediates into nickel-cobalt-benzene tricarboxylic acid MOFs (E-NiCo-BTC MOFs). The structural characteristics of the electrode materials in each step were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, elemental mapping, field emission scanning electron microscopy, and transmittance electron microscopy....