Loading...
Search for:
selectivity-and-sensitivity
0.008 seconds
Analytical figures of merit for multisensor arrays
, Article ACS Sensors ; Volume 5, Issue 2 , 2020 , Pages 580-587 ; Kirsanov, D ; Sharif University of Technology
American Chemical Society
2020
Abstract
Multisensor arrays employing various sensing principles are a rapidly developing field of research as they allow simple and inexpensive quantification of various parameters in complex samples. Quantitative analysis with such systems is based on multivariate regression techniques, and deriving of traditional analytical figures of merit (e.g., sensitivity, selectivity, limit of detection, and limit of quantitation) for such systems is not obvious and straightforward. Nevertheless, it is absolutely needed for further development of the multisensor research field and for introducing these instruments into the general context of analytical chemistry. Here, we report on the protocol for...
Efficient hardware implementation of real-time low-power movement intention detector system using fft and adaptive wavelet transform
, Article IEEE Transactions on Biomedical Circuits and Systems ; Volume 11, Issue 3 , 2017 , Pages 585-596 ; 19324545 (ISSN) ; Shabany, M ; Malekmohammadi, A ; Mohammadinejad, S ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2017
Abstract
The brain-computer interfacing (BCI), a platform to extract features and classify different motor movement tasks from noisy and highly correlated electroencephalogram signals, is limited mostly by the complex and power-hungry algorithms. Among different techniques recently devised to tackle this issue, real-time onset detection, due to its negligible delay and minimal power overhead, is the most efficient one. Here, we propose a novel algorithm that outperforms the state-of-the-art design by sixfold in terms of speed, without sacrificing the accuracy for a real-time, hand movement intention detection based on the adaptive wavelet transform with only 1 s detection delay and maximum...
Synthesis, first-principle simulation, and application of three-dimensional ceria nanoparticles/graphene nanocomposite for non-enzymatic hydrogen peroxide detection
, Article Journal of the Electrochemical Society ; Volume 166, Issue 5 , 2019 , Pages H3167-H3174 ; 00134651 (ISSN) ; Hatamie, A ; Berahman, M ; Simchi, M ; Angizi, S ; Rahmati, R ; Kennedy, J ; Simchi, A ; Sharif University of Technology
Electrochemical Society Inc
2019
Abstract
Owing to the exceptional properties of graphene and the crucial role of substrate on the performance of electrochemical biosensors, several graphene-based hybrid structures have recently emerged, yielding improved selectivity and sensitivity. To date, most of the reported biosensors utilize solution-driven graphene flakes with drawbacks of low conductivity (due to high inter-junction contact resistant) and structural fragility. Herein, we present a conductive three-dimensional CeO2 semiconductor nanoparticles/graphene nanocomposite, as a platform for sensitive detection of hydrogen peroxide, an important molecule in fundamental biological processes. The 3D conductive graphene architecture is...
Synthesis, first-principle simulation, and application of three-dimensional ceria nanoparticles/graphene nanocomposite for non-enzymatic hydrogen peroxide detection
, Article Journal of the Electrochemical Society ; Volume 166, Issue 5 , 2019 , Pages H3167-H3174 ; 00134651 (ISSN) ; Hatamie, A ; Berahman, M ; Simchi, M ; Angizi, S ; Rahmati, R ; Kennedy, J ; Simchi, A ; Sharif University of Technology
Electrochemical Society Inc
2019
Abstract
Owing to the exceptional properties of graphene and the crucial role of substrate on the performance of electrochemical biosensors, several graphene-based hybrid structures have recently emerged, yielding improved selectivity and sensitivity. To date, most of the reported biosensors utilize solution-driven graphene flakes with drawbacks of low conductivity (due to high inter-junction contact resistant) and structural fragility. Herein, we present a conductive three-dimensional CeO2 semiconductor nanoparticles/graphene nanocomposite, as a platform for sensitive detection of hydrogen peroxide, an important molecule in fundamental biological processes. The 3D conductive graphene architecture is...
Electrochemical preparation of over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application in epinephrine determination
, Article Electrochimica Acta ; Volume 57, Issue 1 , 2011 , Pages 132-138 ; 00134686 (ISSN) ; Saberi, R. S ; Sharif University of Technology
Abstract
A composite film constructed of surfactant doped over-oxidized polypyrrole and multi-walled carbon nanotube was prepared on the surface of glassy carbon electrode by the electro-polymerization method. Surface characterization of the modified electrode was performed by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectrometry. The investigations have been proved that the over-oxidation of the modifier film resulted in a porous thin layer that improves the interlayer diffusion mechanism for the electroactive species. On the other hand, the negative charge density on the surface of the electrode excludes the negative analytes (e.g. ascorbate and Fe(CN)63?/4?)...