Loading...
Search for: semi-analytical-approaches
0.01 seconds

    A new simplified formula in prediction of the resonance velocity for multiple masses traversing a thin beam

    , Article Scientia Iranica ; Volume 23, Issue 1 , 2016 , Pages 133-141 ; 10263098 (ISSN) Afghani Khoraskani, R ; Mofid, M ; Eftekhar Azam, S ; Ebrahimzadeh Hassanabadi, M ; Sharif University of Technology
    Abstract
    In this article, transverse vibration of an Euler-Bernoulli beam carrying a series of traveling masses is analyzed. A semi-analytical approach based on eigenfunction expansion method is employed to achieve the dynamic response of the beam. The inertia of the traveling masses changes the fundamental period of the base beam. Therefore, a comprehensive parametric survey is required to reveal the resonance velocity of the traversing inertial loads. In order to facilitate resonance detection for engineering practitioners, a new simplified formula is proposed to approximate the resonance velocity  

    On the energy extraction from large amplitude vibrations of MEMS-based piezoelectric harvesters

    , Article Acta Mechanica ; Volume 228, Issue 10 , 2017 , Pages 3445-3468 ; 00015970 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    Abstract
    As sizes decrease, the advantages of application of piezoelectric materials for mechanical to electrical energy conversion become more obvious in comparison with electromagnetic and electrostatic techniques, according to uncomplicated fabrication processes of microscale piezoelectric harvesters together with their considerable amounts of generated power. Cantilevered silicon beams with surface bounded piezoelectric layers form the main structure of these MEMS-based harvesters. Lowering the resonance frequency down to the range of environmental vibration frequencies is one of the most significant challenges in MEMS harvesters which is usually attempted to be achieved by thinning the beam and... 

    Characterization of a nonlinear MEMS-based piezoelectric resonator for wideband micro power generation

    , Article Applied Mathematical Modelling ; Volume 41 , 2017 , Pages 121-142 ; 0307904X (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Sharif University of Technology
    Elsevier Inc  2017
    Abstract
    Micro-scale piezoelectric unimorph beams with attached proof masses are the most prevalent structures in MEMS-based energy harvesters considering micro fabrication and natural frequency limitations. In doubly clamped beams a nonlinear stiffness is observed as a result of midplane stretching effect which leads to amplitude-stiffened Duffing resonance. In this study, a nonlinear model of a doubly clamped piezoelectric micro power generator, taking into account geometric nonlinearities including stretching and large curvatures, is investigated. The governing nonlinear coupled electromechanical partial differential equations of motion are determined by exploiting Hamilton's principle. A... 

    On the out-of-plane dynamic response of horizontally curved beams resting on elastic foundation traversed by a moving mass

    , Article Journal of Sound and Vibration ; Volume 479 , 2020 Abdoos, H ; Khaloo, A. R ; Foyouzat, M. A ; Sharif University of Technology
    Academic Press  2020
    Abstract
    In this paper, the dynamic behavior of Horizontally Curved Beams (HCBs) resting on an elastic foundation and subjected to a moving mass is investigated. The governing coupled non-linear differential equations of equilibrium are derived, where Coriolis acceleration, centrifugal force and rotary inertia are incorporated in the problem formulation. In the proposed analytical solution, by employing the transition matrix technique, the governing differential equations of motion are subsequently transformed into a new system of linear ordinary differential equations which can be solved using standard numerical procedures. The accuracy as well as the robustness of the solution is ascertained...