Loading...
Search for: semiconducting-silicon
0.01 seconds

    Thermal desorption of ultrathin silicon oxide layers on Si(111)

    , Article Semiconductor Science and Technology, Bristol, United Kingdom ; Volume 15, Issue 2 , 2000 , Pages 160-163 ; 02681242 (ISSN) Iraji Zad, A ; Taghavinia, N ; Ahadian, M ; Mashaei, A ; Sharif University of Technology
    IOP  2000
    Abstract
    The mechanism of oxide desorption from the surface of Si(111) is studied. Oxide layers formed by different chemical treatments were thermally removed in a UHV chamber and the removal process was probed by Auger electron spectroscopy. Results show that the oxide formed by HCl desorbs very fast and the desorption rate is initially almost linear in time, while for oxides formed by HNO3, H2SO4 and NH4OH the rate is initially slow, becoming faster at later times. Similarity in AES spectra of different oxides indicates that the difference in the desorption rates of different oxides cannot be attributed to the difference in chemical environment. Linear increase of void coverage with the square of... 

    The barrier effect of a WxTa(1-x) nanolayer on formation of single-texture CoSi2 on Si(1 0 0)

    , Article Semiconductor Science and Technology ; Volume 21, Issue 8 , 2006 , Pages 1181-1192 ; 02681242 (ISSN) Akhavan, O ; Moshfegh, A. Z ; Hashemifar, S. J ; Azimirad, R ; Sharif University of Technology
    2006
    Abstract
    We have studied the phase formation of a CoSi2 layer by solid-state reaction of ternary Co/WxTa(1-x)/Si(1 0 0) systems. The effect of cosputtered WxTa(1-x) nanometric interlayers, with different values of x (0, 0.25, 0.5, 0.75 and 1), on the degree of texturing of a CoSi2 layer and disilicide formation of the refractory metals has been investigated. The annealed samples, in a temperature range of 400-1000 °C, were analysed by x-ray diffraction, sheet resistance measurement, scanning electron microscopy, and energy-dispersive x-ray techniques. Using W0.25Ta0.75 and W interlayers, the best (1 0 0) texture of the CoSi2 layer with a thermal stability in the range of 900-1000 °C was produced. In... 

    A 60 GHz, 802.11ad/wigig-compliant transceiver for infrastructure and mobile applications in 130 nm sige bicmos

    , Article IEEE Journal of Solid-State Circuits ; Volume 50, Issue 10 , June , 2015 , Pages 2239-2255 ; 00189200 (ISSN) Tomkins, A ; Poon, A ; Juntunen, E ; El Gabaly, A ; Temkine, G ; To, Y. L ; Farnsworth, C ; Tabibiazar, A ; Fakharzadeh, M ; Jafarlou, S ; Abdellatif, A ; Tawfik, H ; Lynch, B ; Tazlauanu, M ; Glibbery, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    A fully integrated 802.11ad/WiGig compliant 60 GHz transceiver is presented in a 130 nm SiGe BiCMOS technology. Encompassing an area of 2.3 mm × 2.16 mm = 4.97 mm2, the transceiver covers the entire 60 GHz band, from 57 to 66 GHz. Within this span, the RX NF, TX OP1dB, and PLL RMS jitter is better than 5.5 dB, + 13.5 dBm, and 7°, respectively. The transceiver is packaged in 1) a system-in-package substrate with industry standard WR-15 transition providing an approximate 1 dB insertion loss, and 2) a cost-effective 7 × 7 mm2 organic BGA package with integrated transmit and receive antennas providing 8 dBi gain. In system-level testing, the transceiver is fully compliant with all TX EVM and RX... 

    Investigation of hydrogen sensing properties and aging effects of Schottky like Pd/porous Si

    , Article Sensors and Actuators, B: Chemical ; Volume 146, Issue 1 , 2010 , Pages 53-60 ; 09254005 (ISSN) Razi, F ; Iraji-Zad, A ; Rahimi, F ; Sharif University of Technology
    Abstract
    We prepared porous silicon samples coated by continuous palladium layer in electroless process. Scanning electron microscopy (SEM) showed cauliflower-shape Pd clusters on the surface. I-V curves of Schottky like Pd/porous Si samples were measured in air and in hydrogen. These measurements showed a metal-interface-semiconductor configuration rather than an ideal Schottky diode. Variations of the electrical current in the presence of diluted hydrogen at room temperature revealed that the samples can sense hydrogen in a wide range of concentration (100-40,000 ppm) without any saturation behavior. Hydrogen sensing properties of these samples were investigated at room temperature for a duration... 

    Ultra-low power current mode all- MOS ASK demodulator for radio frequency identification applications

    , Article IET Circuits, Devices and Systems ; Volume 10, Issue 2 , 2016 , Pages 130-134 ; 1751858X (ISSN) Mousavi, N ; Sharifkhani, M ; Jalali, M ; Sharif University of Technology
    Institution of Engineering and Technology  2016
    Abstract
    An ultra-low power amplitude shift keying (ASK) demodulator for radio frequency identification (RFID) tags is presented. On the basis of a fast averaging stage, the proposed ASK-demodulator uses a current domain switching envelope amplifier which yields low-power operation. More importantly, it removes the need for a conventional voltage comparator. Designed and fabricated in a 0.18 μm complementary metal-oxide-semiconductor process on about 3000 μm2 silicon area, the proposed demodulator consumes only 7.5 μA from a magnetically coupled induced power. Operating with a 13.56 MHz carrier frequency, the circuit supports modulation indices from 7 up to 100%. The demodulator may as well be used... 

    Oxidation effects on transport characteristics of nanoscale MOS capacitors with an embedded layer of silicon nanocrystals obtained by low energy ion implantation

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 124-125, Issue SUPPL , 2005 , Pages 494-498 ; 09215107 (ISSN) Grisolia, J ; Shalchian, M ; Benassayag, G ; Coffin, H ; Bonafos, C ; Schamm, S ; Atarodi, S. M ; Claverie, A ; Sharif University of Technology
    2005
    Abstract
    In this paper, we have studied the effect of annealing under slightly oxidizing ambient (N2 + O2) on the structural and electrical characteristics of a limited number of silicon nanoparticles embedded in an ultra-thin SiO2 layer. These nanoparticles were synthesized by ultra-low energy (1 keV) ion implantation and annealing. Material characterization techniques including transmission electron microscopy (TEM), Fresnel imaging and spatially resolved electron energy loss spectroscopy (EELS) have been used to evaluate the effects of oxidation on structural characteristics of nanocrystal layer. Electrical transport characteristics have been measured on less than one hundred nanoparticles by... 

    From continuous to quantized charging phenomena in few nanocrystals MOS structures

    , Article 11th International Autumn Meeting on Gettering and Defect Engineering in Semiconductor Technology, GADEST 2005, 25 September 2005 through 30 September 2005 ; Volume 108-109 , 2005 , Pages 25-32 ; 10120394 (ISSN); 9783908451136 (ISBN) Benassayag, G ; Shalchian, M ; Grisolia, J ; Bonafos, C ; Atarodi, S. M ; Claverie, A ; Pichaud B ; Claverie A ; Alquier D ; Richter H ; Kittler M ; Richter H ; Kittler M ; Sharif University of Technology
    Trans Tech Publications Ltd  2005
    Abstract
    In this paper, we present a study on the contribution of silicon nanocrystals to the electrical transport characteristics of large (100 µ x 100 µm) and small (100 nm x 100 nm) metaloxide- semiconductor (MOS) capacitors at room temperature. A layer of silicon nanocrystals is synthesized within the oxide of these capacitors by ultra-low energy ion implantation and annealing. Several features including negative differential resistance (NDR), sharp current peaks and random telegraph signal (RTS) are demonstrated in the current-voltage and current-time characteristics of these capacitors. These features have been associated to charge storage in silicon nanocrystals and to the resulting Coulomb... 

    Dependency of barrier height and ideality factor on identically produced small Au/p-Si Schottky barrier diodes

    , Article Physica B: Condensed Matter ; Volume 405, Issue 16 , 2010 , Pages 3253-3258 ; 09214526 (ISSN) Yeganeh, M. A ; Rahmatollahpur, S ; Sadighi-Bonabi, R ; Mamedov, R ; Sharif University of Technology
    2010
    Abstract
    Small high-quality Au/p-Si Schottky barrier diodes (SBDs) with extremely low reverse leakage current using wet lithography were produced. Their effective barrier heights (BHs) and ideality factors from currentvoltage (IV) characteristics were measured by a conducting probe atomic force microscope (C-AFM). In spite of identical preparation of the diodes there was a diode-to-diode variation in ideality factor and barrier height parameters. By extrapolating the plots the built-in potential of the Au/p-Si contact was obtained as Vbi=0.5425 V and the barrier height value (ΦB(C-V)) was calculated to be ΦB(C-V)=0.7145 V for Au/p-Si for a typical 100 μm diode diameters. In the present work the... 

    Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes

    , Article Journal of Semiconductors ; Volume 31, Issue 7 , 2010 ; 16744926 (ISSN) Yeganeh, M. A ; Rahmatollahpur, S. H ; Sharif University of Technology
    2010
    Abstract
    Small high-quality Au/P-Si Schottky barrier diodes (SBDs) with an extremely low reverse leakage current using wet lithography were produced. Their effective barrier heights (BHs) and ideality factors from current-voltage (I -V) characteristics were measured by a conducting probe atomic force microscope (C-AFM). In spite of the identical preparation of the diodes there was a diode-to-diode variation in ideality factor and barrier height parameters. By extrapolating the plots the built in potential of the Au /p-Si contact was obtained as Vbi D 0:5425 V and the barrier height value φB(C-V) was calculated to be φB(C-V) D 0:7145 V for Au/p-Si. It is found that for the diodes with diameters... 

    CVD synthesis of small-diameter single-walled carbon nanotubes on silicon

    , Article Scientia Iranica ; Volume 16, Issue 1 D , 2009 , Pages 61-64 ; 10263098 (ISSN) Arjmandi, N ; Sasanpour, P ; Rashidian, B ; Sharif University of Technology
    2009
    Abstract
    A simple process for the chemical vapor deposition of ultra SD single-wall carbon nanotubes has been developed. In this process, an iron nitrate nonahydrate solution in isopropyl alcohol with a concentration of (400 μgr/milt) was used to catalyst nanoparticle formation on an oxidized silicon wafer. The oxide on the substrate was made of a thick layer of wet oxide sandwiched between two thin layers of dry oxide. The process results in semiconducting Single-Walled carbon Nano Tubes (SWNTs) with diameters of less than 0.7 nm and more than a 1 ev band gap energy, which are amongst the smallest diameters of SWNTs ever reported. © Sharif University of Technology, June 2009  

    Real-space exciton distribution in strained-siligraphene g-SiC7

    , Article Journal of Applied Physics ; Volume 126, Issue 6 , 2019 ; 00218979 (ISSN) Le, P. T. T ; Ebrahimi, M. R ; Davoudiniya, M ; Yarmohammadi, M ; Sharif University of Technology
    American Institute of Physics Inc  2019
    Abstract
    Siligraphene belonging to the family of two-dimensional (2D) materials has great potential in optoelectronics due to its considerable excitonic effects. In this study, the strain effects on the electronic structure and the real-space exciton wave functions of g - SiC 7 are investigated using the first-principles calculations based on the ab initio many-body perturbation theory. Alongside the increase (decrease) of the bandgap with compressive (tensile) strain, our results show that the exciton in the siligraphene monolayer under in-plane biaxial compressive strains is much more localized than that in the case of tensile one, leading to the higher and lower exciton binding energies,... 

    High-Photoresponsive backward diode by two-dimensional SnS2/Silicon heterostructure

    , Article ACS Photonics ; Volume 6, Issue 3 , 2019 , Pages 728-734 ; 23304022 (ISSN) Hosseini, S. A ; Esfandiar, A ; Iraji Zad, A ; Hosseini Shokouh, S. H ; Mahdavi, S. M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Two-dimensional semiconductor materials can be combined with conventional silicon-based technology and sort out part of the future challenges in semiconductor technologies due to their novel electrical and optical properties. Here, we exploit the optoelectronics property of the silicon/SnS2 heterojunction and present a new class of backward diodes using a straightforward fabrication method. The results indicate an efficient device with fast photoresponse time (5-10 μs), high photoresponsivity (3740 AW-1), and high quantum efficiency (490%). We discuss device behavior by considering the band-to-band tunneling model and band bending characteristics of the heterostructure. This device structure... 

    Electrochemical characterization of electrodeposited carbon nanotubes

    , Article Thin Solid Films ; Volume 519, Issue 19 , July , 2011 , Pages 6230-6235 ; 00406090 (ISSN) Fayazfar, H ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    2011
    Abstract
    Carbon nanotubes were electrodeposited in acetonitrile solution at room temperature using Cu, and Fe-Ni nanoparticles as nucleation sites on HF-etched Si(100) wafer substrate. The electrochemical behavior of the deposition was investigated by voltammetry and chronoamperometry techniques. In order to obtain the optimum growth condition, the deposition critical parameters including current density range, potential and time were studied and calculated. Carbon nanotubes with approximate external diameter of 40-100 nm were fabricated under potentiostatic condition and diffusion control at - 20 V in 4-6 h. The film crystallinity was investigated by means of X-ray diffraction and the tubes... 

    Photoconductivity and diode effect in Bi rich multiferroic BiFeO 3 thin films grown by pulsed-laser deposition

    , Article Journal of Materials Science: Materials in Electronics ; Volume 22, Issue 7 , 2011 , Pages 815-820 ; 09574522 (ISSN) Ahadi, K ; Mahdavi, S. M ; Nemati, A ; Kianinia, M ; Sharif University of Technology
    2011
    Abstract
    Bismuth ferrite, BiFeO 3, is almost the only material that is simultaneously magnetic and a strong ferroelectric at room temperature. As a result it is the most investigated multiferroic material. In this study, bismuth ferrite thin films were deposited on silicon wafer (100) and glass by pulsed-laser deposition and their structural, optical, and electrical properties were measured. Our study indicates that Bi richness in these films can stimulate formation of oxygen vacancy in the system which in its turn leads to delocalization of carriers and a more intensified photoconductivity response. X-ray diffraction analysis revealed formation of BiFeO 3 (BFO), but it also showed formation of Bi 2O... 

    The effect of substrate surface roughness on ZnO nanostructures growth

    , Article Applied Surface Science ; Volume 257, Issue 8 , February , 2011 , Pages 3291-3297 ; 01694332 (ISSN) Roozbehi, M ; Sangpour, P ; Khademi, A ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    The ZnO nanowires have been synthesized using vapor-liquid-solid (VLS) process on Au catalyst thin film deposited on different substrates including Si(1 0 0), epi-Si(1 0 0), quartz and alumina. The influence of surface roughness of different substrates and two different environments (Ar + H2 and N2) on formation of ZnO nanostructures was investigated. According to AFM observations, the degree of surface roughness of the different substrates is an important factor to form Au islands for growing ZnO nanostructures (nanowires and nanobelts) with different diameters and lengths. Si substrate (without epi-taxy layer) was found that is the best substrate among Si (with epi-taxy layer), alumina and... 

    Hot filament CVD of Fe-Cr catalyst for thermal CVD carbon nanotube growth from liquid petroleum gas

    , Article Applied Surface Science ; Volume 256, Issue 5 , 2009 , Pages 1365-1371 ; 01694332 (ISSN) Akbarzadeh Pasha, M ; Shafiekhani, A ; Vesaghi, M. A ; Sharif University of Technology
    Abstract
    A hot filament chemical vapor deposition (HFCVD) method was used to prepare Fe-Cr thin film on Si substrate. The produced layers were used as catalysts for growing carbon nanotubes (CNTs) from liquid petroleum gas (LPG) at 825 °C by thermal CVD (TCVD) method. To characterize the obtained catalysts or CNTs, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Raman spectroscopy were used. CNTs were grown on HFCVD derived Fe-Cr catalyst with the LPG as carbon source successfully. It was found that an annealing process on catalysts enhances the surface concentration of Cr atoms and reduces the sizes of catalyst particles. The... 

    Pulsed-laser annealing of NiTi shape memory alloy thin film

    , Article Journal of Materials Science and Technology ; Volume 25, Issue 1 , 2009 , Pages 135-140 ; 10050302 (ISSN) Sadrnezhaad, S. K ; Rezvani, E ; Sanjabi, S ; Ziaei Moayed, A. A ; Sharif University of Technology
    Abstract
    Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheated Si (100) and Silica (111) substrates were used for annealing. Delicate treatment with 15.92 W/mm2 power density resulted in crystallization of small spots; while 16.52 and 17.51 W/mm2 power densities caused ablation of the amorphous layer. Optical microscopy, scanning electron microscopy, X-ray diffraction and atomic force microscopy were performed to characterize the microstructure and surface morphology of the amorphous/crystallized spot patterns  

    Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation

    , Article Carbon ; Volume 47, Issue 14 , 2009 , Pages 3280-3287 ; 00086223 (ISSN) Akhavan, O ; Abdolahad, M ; Abdi, Y ; Mohajerzadeh, S ; Sharif University of Technology
    2009
    Abstract
    TiO2/multi-wall carbon nanotube (MWNT) heterojunction arrays were synthesized and immobilized on Si(0 0 1) substrate as photocatalysts for inactivation of Escherichia coli bacteria. The vertically aligned MWNT arrays were grown on ∼5 nm Ni thin film deposited on the Si by using plasma enhanced chemical vapor deposition at 650 °C. Then, the MWNTs were coated by TiO2 using dip-coating sol-gel method. Post annealing of the TiO2/MWNTs at 400 °C resulted in crystallization of the TiO2 coating and formation of Ti-C and Ti-O-C carbonaceous bonds at the heterojunction. The visible light-induced photoinactivation of the bacteria increased from MWNTs to TiO2 to TiO2/MWNTs, in which the bacteria could... 

    Morphology and hydrogen sensing studies of the electrodeposited nanostructure palladium on porous silicon

    , Article International Journal of Nanotechnology ; Volume 6, Issue 10-11 , 2009 , Pages 892-901 ; 14757435 (ISSN) Astaraie, F. R ; Iraji zad, A ; Taghavi, N. S ; Abbaszadeh, D ; Dolati, A ; Mahshid, S. S ; Sharif University of Technology
    2009
    Abstract
    We have investigated hydrogen sensing properties of electrodeposited Pd clusters on macroporous silicon substrates. Porous layer was prepared by electrochemical etching of p-type silicon (100) wafer in organic electrolyte DMF (dimethylformamide) diluted by HF (%95 Vol. %). The deposition of Pd was carried out by linear voltammetry (LV) technique. This technique was taken for reduction of palladium ions in the potential range from 0.4 V to -1 V vs. SCE, at the scan rate of 20 mV s-1. Some samples were annealed at 300°C for an hour in air to study the effect of heat treatment on their gas sensitivity. Surface structural and chemical properties of the samples were characterised using Scanning...