Loading...
Search for: semiconductor-device-models
0.004 seconds

    Modeling the detection efficiency in photodetectors with temperature-dependent mobility and carrier lifetime

    , Article Superlattices and Microstructures ; Volume 122 , 2018 , Pages 557-562 ; 07496036 (ISSN) Moeini, I ; Ahmadpour, M ; Mosavi, A ; Alharbi, N ; Gorji, N. E ; Sharif University of Technology
    Abstract
    We proposed a modeling procedure to calculate the impact of temperature on the detection efficiency in photodetectors based on CdTe materials. Temperature increase impacts on the electrical properties of the materials such as carrier mobility and carrier recombination lifetime. This impact which can be effective in some cases has been normally ignored in the modeling approaches presented in the literature. Here we show that increasing the temperature from 190 K to 300 K not reduces the mobility of both electrons and holes but also significantly reduces the carrier lifetime. The result will impact on electric-field within the depletion width of the device, drift and diffusion lengths which... 

    Charge controlling in nanoscale shielded channel DG-MOSFET: A quantum simulation

    , Article 14th International Workshop on the Physics of Semiconductor Devices, IWPSD, Mumbai, 16 December 2007 through 20 December 2007 ; 2007 , Pages 127-129 ; 9781424417285 (ISBN) Dehdashti, N ; Orouji, A. A ; Faez, R ; Sharif University of Technology
    2007
    Abstract
    Nanoscale Shielded channel transistors are investigated by solving the two-dimensional Poisson equation self-consistently with ballistic quantum transport equations for first time. We present self-consistent solutions of ultrathin body device structures to investigate the effect of electrically shielded channel region which impose charge controlling in the channel region on the characteristics of nanoscale DG-MOSFET. The simulation method is based on Nonequlibrium Green's Function (NEGF). Starting from a basic structure with a gate length of 10 nm, the effect of gate length variation on the performance of the device has been investigated. © 2007 IEEE  

    Two-dimensional quantum simulation of scaling effects in ultrathin body MOSFET structure: NEGF approach

    , Article 14th International Workshop on the Physics of Semiconductor Devices, IWPSD, Mumbai, 16 December 2007 through 20 December 2007 ; 2007 , Pages 240-242 ; 9781424417285 (ISBN) Orouji, A.A ; Dehdashti, N ; Faez, R ; Sharif University of Technology
    2007
    Abstract
    For the first time, we present self-consistent solution of ultrathin body device structures to investigate the device parameters variation on the characteristics of nanoscale MOSFET. Our two dimensional (2-D) device simulator Is based on Nonequlibrium Green's Function (NEGF) forma lism. Starting from a basic structure (DG-MOSFET) with a gate length of 10 nm, variation of gate length, channel thickness, gate oxide parameters was carried out in connection with the numerical calculation of device characteristics. In this work Quantum transport equations are solved in 2-D by NEGF method in active area of the device to obtain the charge density and Poisson's equation is solved in entire domain of...