Loading...
Search for: sensing-characteristics
0.007 seconds

    An IPMC-made deformable-ring-like robot

    , Article Smart Materials and Structures ; Volume 21, Issue 6 , June , 2012 ; 09641726 (ISSN) Firouzeh, A ; Ozmaeian, M ; Alasty, A ; Iraji Zad, A ; Sharif University of Technology
    Abstract
    In this paper application of ionic polymermetal composite (IPMC) as an actuator in a deformable circular robot is studied. Large bending deformation induced by small stimulating voltage, low stiffness and the sensing characteristics that in future work can be used in feedback control make IPMC a good choice for such an application. Here, first a model for IPMC is proposed that can be used in simulating different arrangements of actuators. The parameters of the model are determined using results of blocked force and free displacement tests. Using this model, potentials of an IPMC-made ring-like robot in passing obstacles and the effect of the number of segments on the rings performance are... 

    Motion of deformable ring made of IPMC

    , Article Proceedings of SPIE - The International Society for Optical Engineering ; Vol. 8409 , 2012 ; ISSN: 0277786X ; ISBN: 9780819490872 Firouzeh, A ; Alasty, A ; Ozmaeian, M ; Sharif University of Technology
    Abstract
    In this paper application of Ionic Polymer Metal Composite (IPMC) as actuator in a deformable ring capable of locomotion is studied. Such a deformable ring moves as a result of gravitational force acting on its body when its shape changes. It can be used in exploration, search and rescue missions in future, where using conventional robots with rigid bodies and actuators is impossible. Large deformation induced by small stimulating voltage, low stiffness the sensing characteristics that in future work can be used in feedback control make IPMC a good choice for such an application. In this work first a model for IPMC is introduce that can be used in simulating deformation of IPMC in different... 

    Motion of deformable ring made of IPMC

    , Article Proceedings of SPIE - The International Society for Optical Engineering ; Volume 8409 , 2012 ; 0277786X (ISSN); 9780819490872 (ISBN) Firouzeh, A ; Alasty, A ; Ozmaeian, M ; National Institute of Standards and Technology; Asia Pacific Committee of Smart and Nano Materials; Nanyang Technol. Univ., Adv. Mater. Res. Cent.; The National Natural Science Foundation of China; Chinese Society of Composite Materials ; Sharif University of Technology
    2012
    Abstract
    In this paper application of Ionic Polymer Metal Composite (IPMC) as actuator in a deformable ring capable of locomotion is studied. Such a deformable ring moves as a result of gravitational force acting on its body when its shape changes. It can be used in exploration, search and rescue missions in future, where using conventional robots with rigid bodies and actuators is impossible. Large deformation induced by small stimulating voltage, low stiffness the sensing characteristics that in future work can be used in feedback control make IPMC a good choice for such an application. In this work first a model for IPMC is introduce that can be used in simulating deformation of IPMC in different... 

    Low temperature nanocrystalline TiO 2-Fe 2O 3 mixed oxide by a particulate sol-gel route: Physical and sensing characteristics

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 46 , September , 2012 , Pages 43-51 ; 13869477 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Nanocrystalline TiO 2-Fe 2O 3 thin films and powders were prepared by a straightforward aqueous particulate sol-gel route at the low temperature of 300 °C. Titanium(IV) isopropoxide and iron(III) chloride were used as precursors, and hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powder crystallised at the low temperature of 300 °C, containing anatase-TiO 2 and hematite-Fe 2O 3 phases. Furthermore, it was found that Fe 2O 3 retarded the anatase-to-rutile transformation up to 500 °C. The activation energies for crystallite growth of TiO 2... 

    Synthesis of nanostructured and nanoporous TiO2-AgO mixed oxide derived from a particulate sol-gel route: Physical and sensing characteristics

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 42, Issue 8 , August , 2011 , Pages 2481-2492 ; 10735623 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2011
    Abstract
    Nanocrystalline TiO2-AgO thin films and powders were prepared by an aqueous particulate sol-gel route at the low temperature of 573 K (300 °C). Titanium tetraisopropoxide and silver nitrate were used as precursors, hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the phase composition of the mixed oxide depends upon the annealing temperature, being a mixture of TiO2 and AgO in the range 573 K to 773 K (300 °C to 500 °C) and a mixture of TiO2, AgO, Ag2O at 973 K (700 °C). Furthermore, one of the smallest crystallite sizes was obtained for TiO... 

    Sensing behavior of flower-shaped MoS2 nanoflakes: Case study with methanol and xylene

    , Article Beilstein Journal of Nanotechnology ; Volume 9, Issue 1 , 2018 , Pages 608-615 ; 21904286 (ISSN) Barzegar, M ; Berahman, M ; Iraji zad, A ; Sharif University of Technology
    Beilstein-Institut Zur Forderung der Chemischen Wissenschaften  2018
    Abstract
    Recent research interest in two-dimensional (2D) materials has led to an emerging new group of materials known as transition metal dichalcogenides (TMDs), which have significant electrical, optical, and transport properties. MoS2 is one of the well-known 2D materials in this group, which is a semiconductor with controllable band gap based on its structure. The hydrothermal process is known as one of the scalable methods to synthesize MoS2 nanostructures. In this study, the gas sensing properties of flower-shaped MoS2 nanoflakes, which were prepared from molybdenum trioxide (MoO3) by a facile hydrothermal method, have been studied. Material characterization was performed using X-ray...