Loading...
Search for: separation-of-variables-method
0.007 seconds

    Semi-analytical prediction of macroscopic characteristics of open-end pressure-swirl injector

    , Article Aerospace Science and Technology ; Volume 82-83 , 2018 , Pages 32-37 ; 12709638 (ISSN) Kebriaee, A ; Olyaei, G ; Sharif University of Technology
    Elsevier Masson SAS  2018
    Abstract
    After proposing a semi-analytical solution for swirl laminar flow, macroscopic characteristics of open-end pressure-swirl injector including discharge coefficient and spray cone angle are calculated. In the presence of air core of the axial region inside the injector, the laminar rotational flow equations are simplified, and with the assumption of the quasi-developed axial flow along the nozzle, the equations are iteratively solved employing separation of variables method. The accuracy of the proposed semi-analytical solution is compared by some numerical and experimental results on an open-end injector. The validity of quasi-developed flow defined in the present work is confirmed based on... 

    An analytical 3-D model for calculating eddy-current damping force for a magnetic levitation system with permanent magnet

    , Article IEEE Transactions on Magnetics ; Volume 48, Issue 9 , Sept , 2012 , Pages 2472-2478 ; 00189464 (ISSN) Ebrahimian, M ; Khodabakhsh, M ; Vossoughi, G ; Sharif University of Technology
    IEEE  2012
    Abstract
    An analytical solution for obtaining steady-state eddy-current-based force on a levitated permanent magnet above a plate with linear conductivity in the field of an electromagnet having cylindrical symmetry is presented in this paper. In literature, the force due to eddy current in this levitation system have been used for high precision positioning of a levitated permanent magnet without providing an explicit analytical model. In this system, a change in the coil's current and also the motion of the levitated permanent magnet in 3-D space generate eddy current in the plate. A novel explicit solution for obtaining damping forces due to these eddy currents is obtained as a function of... 

    Approach for analytical modelling of axial-flux PM machines

    , Article IET Electric Power Applications ; Volume 10, Issue 6 , 2016 , Pages 441-450 ; 17518660 (ISSN) Taghipour Boroujeni, S ; Abedini Mohammadi, A ; Oraee, A ; Oraee, H ; Sharif University of Technology
    Institution of Engineering and Technology  2016
    Abstract
    In the presented paper, an analytical model is developed for calculation of the air gap magnetic flux density in the axial-flux surface-mounted PM machines. The slotting effect is taken into account in the air gap magnetic flux distribution, accurately. The main novelty of this study is replacing the stator teeth by some surface currents at the border of the removed stator teeth. The uniqueness theorem is applied to find the surface currents. The two-dimensional (2D) field solution in the slotless machine is solved easily by separation of variables method. The multi-slice quasi-3D method is applied for taking 3D nature of field distribution into account. In addition, the back-EMF, armature... 

    Computation of armature reaction field and full-load characteristics of an axial flux surface mounted pm machine using a new analytical approach

    , Article 26th Iranian Conference on Electrical Engineering, ICEE 2018, 8 May 2018 through 10 May 2018 ; 2018 , Pages 1027-1031 ; 9781538649169 (ISBN) Seyedi, S. M ; Sharifi, A. H ; Abedini Mohammadi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In recent years axial flux permanent magnet (AFPM) machines have found industrial applications because of such characteristics as high power density, compact structure and disc-like shape. Like other electrical machines, prediction of flux density distribution in the air gap of AFPM is essential. In this paper, an analytical method for calculation of air gap flux density caused by armature reaction is presented. The solution is based on Maxwell's equations. Separation of variables method is applied to field equations and 2D distribution of magnetic flux density in the air gap calculated in term of Fourier series. The 2-D distribution of three-phase armature winding is modeled exactly....