Loading...
Search for: series-resonant-converters
0.011 seconds

    Hybrid control of DC-DC series resonant converters: The direct piecewise affine approach

    , Article IEEE Transactions on Power Electronics ; Vol. 30, issue. 3 , 2014 , p. 1714-1723 Molla-Ahmadian, H ; Tahami, F ; Karimpour, A ; Pariz, N ; Sharif University of Technology
    Abstract
    The control and stabilization of resonant converters are essential problems in power electronics. The conventional controller design and stability analysis for these converters are based on the linearized averaged model. Nevertheless, the state variables in resonant converters have large ac variations and the validity of the linearized average model is violated. Hence, using large signal and nonaveraged models are necessary for controller design and stability analysis. In this paper, a new hybrid controller is presented that is applicable to dc-dc series resonant converters and use neither averaging nor small signal approximation. The dc-dc resonant converters are inherently switched affine... 

    An innovative isolated bidirectional soft-switched battery charger for plug-in hybrid electric vehicle

    , Article International Review on Modelling and Simulations ; Volume 6, Issue 6 , 2013 , Pages 1739-1745 ; 19749821 (ISSN) Ebrahimi, S ; Khazaeli, F ; Tahami, F ; Oraee, H ; Sharif University of Technology
    Praise Worthy Prize S.r.l  2013
    Abstract
    Plug-In hybrid electric vehicles could be connected to the electrical grid to be recharged. To ease the charging process, one solution could use an on-board charger to charge the electric vehicle battery. This charger should be able to be connected to a conventional outlet for convenience reasons and moreover, it should be a grid friendly charger in order not to pollute the electrical network. Since most of the electric vehicle related projects are at their initial phases, keeping up with the pace and developing new technologies and proposing innovations and concepts will help growing the industry. In this regard, a new integrated bidirectional isolated soft-switched plug-in hybrid electric... 

    Modeling and control of DC-DC series resonant converters: A polyhedral piecewise affine approach

    , Article PEDSTC, 2014 - 5th Annual International Power Electronics, Drive Systems and Technologies Conference ; 5- 6 February , 2014 , pp. 273-279 Afshang, H ; Tahami, F ; Molla-Ahmadian, H ; Sharif University of Technology
    Abstract
    The subject of modeling and stability analysis of dc-dc resonant converters is still a challenge. The conventional large signal nonlinear model of the resonant converter is derived using the sinusoidal approximation and averaging followed by linearization about an operating point. Models obtained with such method involve considerable approximation, and produce results that are limited for higher performance designs. Therefore, it is essential to investigate the stability of the resonant converters using a more sophisticated model. Because of semiconductors switching, dc-dc resonant converters are intrinsically hybrid systems consist of discrete input and continuous states. The complexity of... 

    Integrated bidirectional isolated soft-switched battery charger for vehicle-to-grid technology using 4-Switch 3Φ-rectifier

    , Article IECON Proceedings (Industrial Electronics Conference) ; November , 2013 , Pages 906-911 ; 9781479902248 (ISBN) Ebrahimi, S ; Taghavi, M ; Tahami, F ; Oraee, H ; Sharif University of Technology
    2013
    Abstract
    Battery and plug-in hybrid vehicles equipped with bidirectional battery chargers are capable of supplying power to the electric grid according to power system demand. This technology is called 'vehicle to grid' or V2G. A bidirectional on-board charger can be used to improve the charge availability. An on-board charger should have small size and light weight. On the other hand, the charger must minimize power quality impact, draw current at high power factor to maximize power from an outlet. In this paper, a new three-phase integrated bidirectional isolated soft-switched battery charger is proposed which is appropriate for vehicle to grid technology. The charger utilizes a 4-switch... 

    Voltage regulation of DC-DC series resonant converter operating in discontinuous conduction mode: The hybrid control approach

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 32, Issue 11 , 2019 , Pages 1610-1619 ; 1728144X (ISSN) Afshang, H ; Tahami, F ; Sharif University of Technology
    Materials and Energy Research Center  2019
    Abstract
    Dynamic modeling and control of DC-DC series resonant converter (SRC) especially when operating in discontinuous conduction mode (DCM) is still a challenge in power electronics. Due to semiconductors switching, SRC is naturally represented as a switched linear system, a class of hybrid systems. Nevertheless, the hybrid nature of the SRC is commonly neglected and it is modeled as a purely continuous dynamics based on the sinusoidal approximation and averaging. However, an SRC may be purposely designed to operate in DCM so the sinusoidal approximation is no longer acceptable. Therefore, it is essential to analyze the stability using a more sophisticated model. This paper presents a novel... 

    Voltage regulation of DC-DC series resonant converter operating in discontinuous conduction mode: the hybrid control approach

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 32, Issue 11 , 2019 , Pages 1610-1619 ; 1728144X (ISSN) Afshang, H ; Tahami, F ; Sharif University of Technology
    Materials and Energy Research Center  2019
    Abstract
    Dynamic modeling and control of DC-DC series resonant converter (SRC) especially when operating in discontinuous conduction mode (DCM) is still a challenge in power electronics. Due to semiconductors switching, SRC is naturally represented as a switched linear system, a class of hybrid systems. Nevertheless, the hybrid nature of the SRC is commonly neglected and it is modeled as a purely continuous dynamics based on the sinusoidal approximation and averaging. However, an SRC may be purposely designed to operate in DCM so the sinusoidal approximation is no longer acceptable. Therefore, it is essential to analyze the stability using a more sophisticated model. This paper presents a novel... 

    Study,Simulation and Design of Soft Switching Converters for Electric Vehicle Chargers and Proposing the Most Appropriate Structure Equipped With PFC Rectifiers

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Milad (Author) ; Oraee Mirzamani, Hashem (Supervisor) ; Tahami, Farzad (Supervisor)
    Abstract
    Constantly rising fuel prices and environmental consciousness have caused alternative transport solutions to be considered.Recently, batteries and electric vehicle industries have developed to become a reasonable alternative for gasoline powered cars. Plug-In hybrid electric vehicles could be connected to the electrical grid to be recharged. To ease the charging process, one solution could use an on-board charger to charge the electric vehicle. This charger should be able to be connected to a conventional outlet for convenience reasons and moreover, it should be a grid friendly charger in order not to pollute the electrical network. After studying the introduced structures for electric... 

    A novel hybrid modeling of DC-DC series resonant converters

    , Article IECON Proceedings (Industrial Electronics Conference) ; 2013 , Pages 280-286 ; 9781479902248 (ISBN) Afshang, H ; Tahami, F ; Molla Ahmadian, H ; The Institute of Electrical and Electronics Engineers (IEEE); IEEE Industrial Electronics Society (IES); Austrian Institute of Technology (AIT); Vienna University of Technology (TU Vienna) ; Sharif University of Technology
    2013
    Abstract
    The subject of modeling and stability analysis of dc-dc resonant converters is still a challenge. The conventional large signal nonlinear model of the resonant converter is derived using the sinusoidal approximation and averaging followed by linearization about an operating point. Models obtained with such method involve considerable approximation, and produce results that are limited for higher performance designs. Therefore, it is essential to investigate the stability of the resonant converters using a more sophisticated model. Because of semiconductors switching, dc-dc resonant converters are intrinsically hybrid systems consist of discrete input and continuous states. The complexity of... 

    Control of series resonant converter with robust performance against load and power circuit components uncertainties

    , Article PEDSTC 2010 - 1st Power Electronics and Drive Systems and Technologies Conference, 17 February 2010 through 18 February 2010, Tehran ; 2010 , Pages 122-128 ; 9781424459728 (ISBN) Mohammadpour, A ; Mokhtari, H ; Zolghadri, M. R ; Sharif University of Technology
    2010
    Abstract
    Robust performance controller design for duty-cycle controlled series resonant converter is proposed in this paper. The uncertainties of the converter are analyzed with load variation and power circuit components tolerances are taken into consideration. Additionally, a nominal performance H ∞ controller is designed. Closed-loop system is simulated and simulation results of robust controller are compared with H∞ nominal performance controller  

    Skip cycle controlled resonant converter with high efficiency over wide load range

    , Article 4th IET International Conference on Power Electronics, Machines and Drives, PEMD 2008, York, 2 April 2008 through 4 April 2008 ; Issue 538 CP , 2008 , Pages 742-746 ; 9780863419003 (ISBN) Kaboli, S ; Alavi, M. H ; Oraee, H ; Sharif University of Technology
    2008
    Abstract
    Due to the fast response of skip cycle modulation technique, it has been used to control of some DC/DC converters. In this paper, it is used to control of a series resonant converter. A pulse generator circuit is presented for zero current switching. Simulation and experimental results are presented to show the features of this control method. Results show that the converter has a fast response and high efficiency. Design notes about magnetic parts of converter are also presented to achieve the highest efficiency  

    Hybrid Modeling and Control of DC-DC Series Resonant Converters for Applications of Wide Range Power

    , Ph.D. Dissertation Sharif University of Technology Afshang, Hamid (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    The subject of control and stabilization of dc-dc series resonant converter (SRC) is still a challenge in power electronics. The conventional controller design and stability analysis for this converter are based on the model which is derived using the sinusoidal approximation and averaging followed by linearization about an operating point. This model is not applicable to a SRC that operates below resonance especially in discontinuous conduction mode (DCM) because the sinusoidal approximation is no longer acceptable. However, a SRC may be purposely designed to operate in DCM. Therefore, it is essential to investigate the stability analysis and controller design using a more sophisticated... 

    Hybrid modeling of a DC-DC series resonant converter: Direct piecewise affine approach

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 59, Issue 12 , 2012 , Pages 3112-3120 ; 15498328 (ISSN) Molla Ahmadian, H ; Karimpour, A ; Pariz, N ; Tahami, F ; Sharif University of Technology
    IEEE  2012
    Abstract
    A dc-dc resonant converter has the advantage of overcoming switching losses and electromagnetic interference which are the main limitations of high frequency power converters. Nevertheless, the modeling and stability analysis of dc-dc resonant converters are considerably more complex than pulsewidth modulation counterparts. The conventional averaged linearized model of the resonant converter has limitations due to averaging and linearization. First of all, the linearized model has large modeling error in presence of large variations of reference voltage and input voltage. Furthermore, Converging area for stabilizing controllers is smaller in the averaged model. In order to overcome these... 

    An isolated bidirectional integrated plug-in hybrid electric vehicle battery charger with resonant converters

    , Article Electric Power Components and Systems ; Volume 44, Issue 12 , 2016 , Pages 1371-1383 ; 15325008 (ISSN) Ebrahimi, S ; Akbari, R ; Tahami, F ; Oraee, H ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    Plug-in hybrid electric vehicles draw electricity from the electrical grid and store energy in their batteries. To increase charge availability for plug-in hybrid electric vehicles, on-board chargers can be used, which should be small in size and lightweight. In this article, an on-board bidirectional soft-switched battery charger is proposed that utilizes a phase-shift-controlled dual-bridge series resonant converter with isolation. The bidirectional characteristic of proposed charger makes it suitable for vehicle-to-grid operation (i.e., injecting power from the vehicle to the grid) in smart grids. A switching control scheme is also proposed to provide soft-switching operation for all... 

    Hybrid control of the dc-dc SRC operating below resonance

    , Article IET Power Electronics ; Volume 10, Issue 1 , 2017 , Pages 1-9 ; 17554535 (ISSN) Afshang, H ; Tahami, F ; Molla Ahmadian, H ; Sharif University of Technology
    Institution of Engineering and Technology  2017
    Abstract
    Control and stabilisation of the resonant converters are essential problems in power electronics. The conventional model of the dc-dc series resonant converter (SRC) is derived using the sinusoidal approximation and generalised averaging followed by linearisation about an operating point. This model involves considerable approximation and is not applicable for large variation of load and supply voltage. The authors have already proposed a direct piece-wise affine (DPWA) modelling and control approach for the SRC that operates above resonant frequency. However, the DPWA technique is not applicable to an SRC that operates below resonance because of the presence of harmonics. In this study, a...