Loading...
Search for: serpentine
0.006 seconds

    Droplet-based flows in serpentine microchannels: chemical reactions and secondary flows

    , Article International Journal of Multiphase Flow ; Volume 97 , 2017 , Pages 186-196 ; 03019322 (ISSN) Madadelahi, M ; Shamloo, A ; Sharif University of Technology
    Abstract
    Mixing is an essential operation in many microfluidic devices. Droplet-based micromixers utilize droplets for mixing enhancement. In the present study, a novel three-dimensional simulation is conducted which has the ability to capture not only the mixing process, but also the chemical reactions inside liquid droplets. This two-phase model is used for simulating the reacting flow inside a serpentine microchannel and explores the effects of droplet size and reaction rate on the production and consumption of species in droplets. It is observed that the chemical reaction in each droplet, begins from its front area. Furthermore, it is shown that the production of species does not depend on water... 

    Optimization of a serpentine model for low-dispersion flows in micro channel turns

    , Article 5th International Conference on Perspective Technologies and Methods in MEMS Design, MEMSTECH 2009, Lviv-Polyana, 22 April 2009 through 24 April 2009 ; 2009 , Pages 136-140 ; 9789662191066 (ISBN) Fathollahi, E ; Afsharikia, S ; Taghizadeh Manzari, M.T ; Sharif University of Technology
    2009
    Abstract
    Chip-based micro fluidic separation systems often use serpentine channels to attain long separation lengths in a compact area. Such designs suffer from the dispersion, mostly 'racetrack' effect, due to the bends in the micro channels. The main goal of this paper is obtaining a model which has minimal racetrack in a serpentine geometry. A numerical analysis leads us to an optimized model which is different from previous attempts in this field. Our model uses modified turn radii, optimal length between bends with a constant zeta-potential boundary condition and a constant width through micro channel turns. It is shown that traveling fluid in this geometry has minimal dispersion as well as... 

    Inertial particle focusing in serpentine channels on a centrifugal platform

    , Article Physics of Fluids ; Volume 30, Issue 1 , 2018 ; 10706631 (ISSN) Shamloo, A ; Mashhadian, A ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    Inertial particle focusing as a powerful passive method is widely used in diagnostic test devices. It is common to use a curved channel in this approach to achieve particle focusing through balancing of the secondary flow drag force and the inertial lift force. Here, we present a focusing device on a disk based on the interaction of secondary flow drag force, inertial lift force, and centrifugal forces to focus particles. By choosing a channel whose cross section has a low aspect ratio, the mixing effect of the secondary flow becomes negligible. To calculate inertial lift force, which is exerted on the particle from the fluid, the interaction between the fluid and particle is investigated... 

    Optimization, Fabrication and Utilization of a New Tendon Actuated Manipulator with Lockable Joints

    , M.Sc. Thesis Sharif University of Technology Shafaei, Mohsen (Author) ; Alasty, Aria (Supervisor) ; Salarieh, Hassan (Supervisor)
    Abstract
    Serpentine manipulators are a kind of hybrid manipulators that have a large number of joints and degrees of freedom. Due to their high flexibility, they have a great potential to work in constrained environment that filled with obstacles. One of the main problems of this type of manipulators is high weight and controlling difficulties. Many researches have been done to achieve lighter weight and simplify control methods of hyper-redundant manipulator. One way is putting the actuators in the base of the manipulator and transferring the actuator forces by cable. In this way, one cable and one actuator per controllable DOF is needed. Therefore, the weight and cost will increase dramatically... 

    Analyzing mixing quality in a curved centrifugal micromixer through numerical simulation

    , Article Chemical Engineering and Processing: Process Intensification ; 2017 ; 02552701 (ISSN) Shamloo, A ; Vatankhah, P ; Akbari, A ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    The Lab On a CD (LOCD), also known as Centrifugal Microfluidics, has evolved into a sophisticated platform for performing biomedical assays due to its marvelous miniaturization and accurate simulation of biological reactions. Among the numerous applications of the LOCD is fluid mixing. In this paper a centrifugal, serpentine micromixer is simulated and reformed toward better mixing performance. The micromixer was chosen to be curved as a curved design was found to be thrice as functional and compact as a rectilinear design, mixing-wise. The two angular velocity and opening radius parameters were originally hypothesized to affect mixing performance. Effect of angular velocity was studied over... 

    Analyzing mixing quality in a curved centrifugal micromixer through numerical simulation

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 116 , 2017 , Pages 9-16 ; 02552701 (ISSN) Shamloo, A ; Vatankhah, P ; Akbari, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The Lab On a CD (LOCD), also known as Centrifugal Microfluidics, has evolved into a sophisticated platform for performing biomedical assays due to its marvelous miniaturization and accurate simulation of biological reactions. Among the numerous applications of the LOCD is fluid mixing. In this paper a centrifugal, serpentine micromixer is simulated and reformed toward better mixing performance. The micromixer was chosen to be curved as a curved design was found to be thrice as functional and compact as a rectilinear design, mixing-wise. The two angular velocity and opening radius parameters were originally hypothesized to affect mixing performance. Effect of angular velocity was studied over... 

    Newtonian and generalized Newtonian reacting flows in serpentine microchannels: pressure driven and centrifugal microfluidics

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 251 , January , 2018 , Pages 88-96 ; 03770257 (ISSN) Madadelahi, M ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This paper presents a comprehensive 3D numerical simulation of reacting flows in micro scale dimension through centrifugal, or Lab-On-a-CD (LOCD), and pressure-driven, or Lab-On-a-Chip (LOC) devices. Three different serpentine channel configurations (rectangular, triangular and sinusoidal) are investigated. In these configurations, two chemical species enter from two inlets and according to an irreversible chemical reaction, start yielding other species. Both Newtonian and generalized Newtonian fluids are considered in the simulations and the results are compared for both LOC and LOCD devices. Besides, the effects of different parameters such as the aspect ratio of channels’ cross section,... 

    Design and fabrication of a two-phase diamond nanoparticle aided fast PCR device

    , Article Analytica Chimica Acta ; Volume 1068 , 2019 , Pages 28-40 ; 00032670 (ISSN) Madadelahi, M ; Ghazimirsaeed, E ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Polymerase Chain Reaction (PCR) is an important and prevalent technique in biotechnology because of its crucial role in cloning DNA fragments and diagnostic applications. In the present study, a high-throughput two-phase PCR device is designed and fabricated which utilizes a serpentine microchannel together with a spiral structure. The former is for the droplet-generation and mixing and the latter is for the thermal cycling process. Moreover, the effect of diamond nanoparticles (diamondNP) on the performance of PCR is also investigated while using commercial PCR devices and the fabricated PCR device designed in this study. Using numerical simulation, it is shown that within the simple and... 

    Numerical simulation of centrifugal serpentine micromixers and analyzing mixing quality parameters

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 104 , 2016 , Pages 243-252 ; 02552701 (ISSN) Shamloo, A ; Madadelahi, M ; Akbari, A ; Sharif University of Technology
    Elsevier, B.V  2016
    Abstract
    Centrifugal microfluidics or the Lab on a CD (LOCD) has developed vast applications in biomedical researches and analyses. Fluid mixing is an application of the LOCD. In this paper, multiple centrifugal micromixers were simulated. Various parameters were originally presumed to have an effect on mixing performance. These parameters include inlet angle, angular velocity, cross-sectional profile, perpendicular length ratio and the number of channels in series. They were each analyzed through simulations. It was gathered that the inlet angle does not significantly affect the mixing quality. Increasing angular velocity steadily increases mixing quality for all geometries. The vertical triangular... 

    A new non-dimensional parameter to obtain the minimum mixing length in tree-like concentration gradient generators

    , Article Chemical Engineering Science ; Volume 195 , 2019 , Pages 120-126 ; 00092509 (ISSN) Rismanian, M ; Saidi, M. S ; Kashaninejad, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Microfluidic-based concentration gradient generators (CGGs) have a number of applications in chemical, biological and pharmaceutical studies. Thus, precise design of the microfluidic system is crucial to maintaining the desired concentration gradient in microchannels. One of the design considerations is the length of microchannels in the structure of a CGG. A CGG with a short length fails to provide the complete diffusive mixing, while the size of the microchip would unfavorably increase by incorporating a long CGG. Considering a CGG as a tree-like structure consisting of T-shaped micromixers, the mixing process of the species at a straight microchannel has been solved analytically. Herein,... 

    An innovative three dimensional numerical model for bipolar plates to enhance the efficiency of PEM fuel cells

    , Article ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology Collocated with the ASME 2012 6th International Conference on Energy Sustainability, FUELCELL 2012, 23 July 2012 through 26 July 2012 ; July , 2012 , Pages 351-360 ; 9780791844823 (ISBN) Arbabi, F ; Roshandel, R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2012
    Abstract
    The efficiency of proton exchange membrane (PEM) fuel cell is straightly correlated to the bipolar plate design and fluid channel arrangements. Higher produced energy can be attained by optimal design of type, size, or patterns of the channels. Previous researches showed that the bipolar plate channel design has a considerable effect on reactant distribution uniformity as well as humidity control in PEM fuel cells. This paper concentrates on enhancements in the fuel cell performance by optimization of bipolar plate design and channels configurations. A numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The results gained from... 

    Numerical simulation of mixing and heat transfer in an integrated centrifugal microfluidic system for nested-PCR amplification and gene detection

    , Article Sensors and Actuators, B: Chemical ; Volume 283 , 2019 , Pages 831-841 ; 09254005 (ISSN) Naghdloo, A ; Ghazimirsaeed, E ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Nucleic acid amplification via polymerase chain reaction (PCR) is one of the essential and powerful methods used in a myriad of bio-assays in clinical laboratories. Application of microfluidic devices in biologically-related processes like PCR can result in the usage of less volume of reactant samples and reduce the processing time. By implementing PCR systems on centrifugal microfluidic platforms, automation and portability can be easily achieved. Although several methods have been developed, most of them are still dealing with challenges of the required high processing time. This study presents the numerical simulation of a fully automated PCR system with the goal of enhancing the mixing... 

    Design and simulation of an integrated centrifugal microfluidic device for CTCs separation and cell lysis

    , Article Micromachines ; Volume 11, Issue 7 , July , 2020 Nasiri, R ; Shamloo, A ; Akbari, J ; Tebon, P ; Dokmeci, M. R ; Ahadian, S ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Separation of circulating tumor cells (CTCs) from blood samples and subsequent DNA extraction from these cells play a crucial role in cancer research and drug discovery. Microfluidics is a versatile technology that has been applied to create niche solutions to biomedical applications, such as cell separation and mixing, droplet generation, bioprinting, and organs on a chip. Centrifugal microfluidic biochips created on compact disks show great potential in processing biological samples for point of care diagnostics. This study investigates the design and numerical simulation of an integrated microfluidic device, including a cell separation unit for isolating CTCs from a blood sample and a... 

    Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells

    , Article Renewable Energy ; Volume 41 , 2012 , Pages 86-95 ; 09601481 (ISSN) Roshandel, R ; Arbabi, F ; Moghaddam, G. K ; Sharif University of Technology
    2012
    Abstract
    Proton exchange membrane (PEM) fuel cell performance is directly related to the bipolar plate design and their channels pattern. Power enhancements can be achieved by optimal design of the type, size, or patterns of the channels. It has been realized that the bipolar plate design has significant role on reactant transport as well as water management in a PEM Fuel cell. Present work concentrates on improvements in the fuel cell performance by optimization of flow-field design and channels configurations. A three-dimensional, multi-component numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The simulation results showed excellent...