Loading...
Search for: severe-plastic-deformation--spd
0.011 seconds

    Hot workability of ultrafine-grained aluminum alloy produced by severe plastic deformation of Al6063 powder and consolidation [electronic resource]

    , Article Materials Science Forum ; Volume 667-669, 2011, Pages 979-984 Asgharzadeh, H. (Hamed) ; Simchi, A. (Abdolreza) ; Seop Kim, Hyoung ; Sharif University of Technology
    Abstract
    Al6063 powder was subjected to severe plastic deformation via high-energy mechanical milling to prepare ultrafine-grained (UFG) aluminium alloy. Uniaxial compression test at various temperatures between 300 and 450 °C and strain rates between 0.01 and 1 s-1 was carried out to evaluate hot workability of the material. Microstructural studies were performed by EBSD and TEM. The average activation energy and strain rate sensitivity of the hot deformation process were determined to be 280 kJ mol-1 and 0.05, respectively. The deformation temperature and applied strain rate significantly affected the grain structure of UFG Al alloy. A finer grain structure was obtained at lower temperatures and... 

    Mechanical properties of severely plastic deformed aluminum sheets joined by friction stir welding

    , Article Materials Science and Engineering A ; Volume 543 , 2012 , Pages 243-248 ; 09215093 (ISSN) Khorrami, M. S ; Kazeminezhad, M ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    The severely plastic deformed aluminum sheets were joined by friction stir welding (FSW). The technique used for imposing the severe strain to the sheets was constrained groove pressing (CGP) process. The specimens with three different imposed strains by CGP, which lead to different initial microstructures, were joined at various rotation (. ω) and traveling (. V) speeds. The microhardness measurements and microstructure investigations were carried out. It was revealed that after FSW process of the specimens strained by CGP process, grain growth and correspondingly hardness reduction were observed at the stir zone. Also, transverse tensile test was performed at all conditions. For the CGPed... 

    Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes

    , Article Materials Science and Engineering A ; Volume 528, Issue 1 , November , 2010 , Pages 180-188 ; 09215093 (ISSN) Mohebbi, M. S ; Akbarzadeh, A ; Sharif University of Technology
    2010
    Abstract
    A novel SPD process for manufacturing of high strength tubes and cylinders by accumulative spin-bonding (ASB) is proposed. It is demonstrated that due to incremental deformation in this process, high strain rate without considerable temperature rise is achieved. This is accompanied with a high value of Zener-Hollomon parameter as a characteristic of this SPD process. ASB was applied to a commercially pure aluminum up to four cycles and its effects on the microstructure and mechanical properties were examined by optical microscopy, TEM, EBSD, microhardness and tension tests. The results show that ultra-fine grains are developed during the process by formation of subgrains at early stages... 

    Deformation characteristics evaluation of modified equal channel angular pressing processes

    , Article Materials Transactions ; Volume 51, Issue 1 , 2010 , Pages 46-50 ; 13459678 (ISSN) Yoon, S. C ; Nagasekhar, A. V ; Yoo, J. H ; El Aal, M. I. A ; Vaseghi, M ; Kim, H. S ; Sharif University of Technology
    2010
    Abstract
    In current studies, equal channel angular pressing process (ECAP) and modified ECAP processes are simulated under ideal conditions to compare the deformation characteristics. The deformation behaviour is more complicated and the strain induced during the processes is highly non-uniform in the modified ECAP processes except in the equal channel multi-angular pressing (ECMAP) process with Route C. The strain homogeneity is more of a possibility with ECAP and ECMAP with Route C processes. The deformation stress state is widely distributed in nature in modified ECAP processes than in conventional ECAP. In addition, the load requirements are also higher in modified ECAP processes with that of the... 

    3D finite element analysis and experimental validation of constrained groove pressing-cross route as an SPD process for sheet form metals

    , Article International Journal of Advanced Manufacturing Technology ; Volume 73, Issue 9-12 , August , 2014 , Pages 1291-1305 ; ISSN: 02683768 Khodabakhshi, F ; Abbaszadeh, M ; Mohebpour, S. R ; Eskandari, H ; Sharif University of Technology
    Abstract
    A new modification of constrained groove pressing (CGP) process named as constrained groove pressing-cross route (CGP-CR) was suggested for severe plastic deformation (SPD) of sheet form metals with great potential for fabricating high strength nanostructured sheets. This process is based on the conventional CGP process including some modifications. One pass of this process includes eight stages (four corrugation and four flattening) and involves 90° cross-rotation between each two stages. As a result of each CGP-CR pass, a strain magnitude of ∼2.32 is imparted to the sample. To simulate the process, finite element modeling (FEM) was carried out using three-dimensional finite element... 

    Application of CGP-cross route process for microstructure refinement and mechanical properties improvement in steel sheets

    , Article Journal of Manufacturing Processes ; Volume 15, Issue 4 , 2013 , Pages 533-541 ; 15266125 (ISSN) Khodabakhshi, F ; Abbaszadeh, M ; Eskandari, H ; Mohebpour, S. R ; Sharif University of Technology
    2013
    Abstract
    A modified method of severe plastic defomation (SPD) entitled constrained groove pressing-cross route (CGP-CR) was introduced for imposing a high magnitude of equivalent strain of about 2.32 per pass on the sheet form samples. The major benefit of this improved route compared to previous common route was the more homogeneity of strain in the rolling (RD) and transverse (TD) directions of sheets. In this study, low carbon steel samples were used for examination of evolutions in microstructure and mechanical properties during SPD via CGP-CR process. Mechanical properties improvement were measured by tensile and macro hardness tests. The results indicate that CGP-CR process can effectively... 

    Development of a novel severe plastic deformation method for tubular materials: Tube Channel Pressing (TCP)

    , Article Materials Science and Engineering A ; Volume 528, Issue 15 , June , 2011 , Pages 5066-5072 ; 09215093 (ISSN) Zangiabadi, A ; Kazeminezhad, M ; Sharif University of Technology
    2011
    Abstract
    A new severe plastic deformation (SPD) method entitled Tube Channel Pressing (TCP) is proposed. In this study, the ability of TCP on strength improvement and grain refinement is assessed. This method is based on pressing a tube through a tubular channel die with a neck zone. Utilization of a mandrel fitted inside the tube prevents the crumpling of tube and preserves its initial dimension. Due to the symmetric design, after one pass, the die is rotated upside down and the second pass is applied by pressing the tube in inverse direction. Ultimate strength of a commercial purity aluminum tube after 5 successful passes is improved to 2 times of the initial strength. Analytical calculations and... 

    Surrogate-based pareto optimization of annealing parameters for severely deformed steel

    , Article Materials and Design ; Volume 92 , 2016 , Pages 1062-1069 ; 02641275 (ISSN) Ghiabakloo, H ; Lee, K ; Kazeminezhad, M ; Kang, B. S ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Severe plastic deformation (SPD) is a metalworking technique that is used for the enhancement of the strength and hardness of metallic materials. As SPD causes ductility deterioration, materials typically necessitate annealing for ductility increase; however, annealing may conversely affect strength and hardness. Thus, to optimally balance strength, hardness, and ductility, this study determined annealing conditions with a severely deformed low carbon steel sheet by adjusting annealing time and temperature. For the facilitation of the annealing process optimization, measurements of strength, hardness, and ductility under various annealing conditions were represented by regression Kriging.... 

    Predicting the ultimate grain size of aluminum sheets undergone constrained groove pressing

    , Article International Journal of Advanced Manufacturing Technology ; Volume 86, Issue 5-8 , 2016 , Pages 1639-1658 ; 02683768 (ISSN) Pouraliakbar, H ; Firooz, S ; Jandaghi, M. R ; Khalaj, G ; Nazari, A ; Sharif University of Technology
    Springer-Verlag London Ltd  2016
    Abstract
    The grain size of constrained groove pressed aluminum has been predicted through the genetic programming approach. “Sheet thickness,” “elongation,” “yield strength,” “ultimate tensile strength,” “total strain,” and “hardness,” along with “primary grain size” of the ultrafine-grained sheets were utilized as input parameters to obtain the ultimate grain size. A total number of 73 available data in the literature were gathered and randomly divided into 60 and 13 sets for algorithm training and testing, respectively. Among the presented models, the one with best performance utilized parameters of total strain, ultimate tensile strength, and primary grain size with 40 chromosomes, 10 head sizes,... 

    Constrained groove pressing, cold-rolling, and post-deformation isothermal annealing: Consequences of their synergy on material behavior

    , Article Materials Chemistry and Physics ; Volume 206 , 2018 , Pages 85-93 ; 02540584 (ISSN) Pouraliakbar, H ; Jandaghi, M. R ; Heidarzadeh, A ; Jandaghi, M. M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Stress-relieved Al-Mn-Si specimens were constrained groove pressed (CGPed) and in the following, cold-rolled under different strains of 0.47, 0.8 and 1.27. Dual strained sheets were isothermally heat treated at 150, 250, and 350 °C. Microstructure survey revealed that generated shear-bands by CGP acted as talent sites for further strain-induced grain boundary migration (SIGBM) during annealing. SEM micrographs pointed out that coarse particles (1 μm <) had not preferential positions within the aluminum matrix and often comminuted into fine dispersoids (0.5 μm >) under heavy strains. Assessment of the softening fraction (Rrec) depicted that greater accumulated strains along with higher... 

    Effect of severe plastic deformation on evolution of intermetallic layer and mechanical properties of cold roll bonded Al-Steel bilayer sheets

    , Article Journal of Materials Research and Technology ; Volume 9, Issue 5 , 2020 , Pages 11497-11508 Dehghanpour Baruj, H ; Shadkam, A ; Kazeminezhad, M ; Sharif University of Technology
    Elsevier Editora Ltda  2020
    Abstract
    In this study, evolution of intermetallic layer of the cold roll bonded bilayer of Aluminum-Steel sheets, during severe plastic deformation (SPD) followed by annealing has been investigated. The effect of such evolution on mechanical properties has been discussed. For this purpose, Constrained Groove Pressing (CGP) was used as a SPD process. Field emission scanning electron microscope equipped with energy dispersive spectroscopy and optical microscopy were used for examination of intermetallic compounds morphology and composition. Meanwhile, tensile properties of the bilayer sheets were evaluated. According to microstructural observations, continuous intermetallic layer was formed during... 

    Optimum groove pressing die design to achieve desirable severely plastic deformed sheets

    , Article Materials and Design ; Volume 31, Issue 1 , 2010 , Pages 94-103 ; 02641275 (ISSN) Kazeminezhad, M ; Hosseini, E ; Sharif University of Technology
    2010
    Abstract
    In this paper, considering the problems of common finite element (FE) codes that consider simple constitutive equations, a developed FE code that considers a new constitutive model is used to simulate the behavior of copper sheets under severe plastic deformation (SPD). The new proposed constitutive model, that considers dislocation densities in cell interiors and cell walls of material as true internal state variables, can investigate all stages of flow stress evolution of material during large plastic deformations and also can explain the effects of strain rate magnitude on the mechanical response of material, during room temperature SPD. The proposed FE analysis is used to investigate the...