Loading...
Search for: severe-shot-peening
0.006 seconds

    Application of artificial neural network to predict the effects of severe shot peening on properties of low carbon steel

    , Article Advanced Structured Materials ; Volume 61 , 2016 , Pages 45-60 ; 18698433 (ISSN) Maleki, E ; Farrahi, G. H ; Sherafatnia, K ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    Mechanical failures in most cases originate from the exterior layers of the components. It is considerably effective to apply methods and treatments capable to improve the mechanical properties on component’s surface. Surface nanocrystallization produced by severe plastic deformation (SPD) processes such as severe shot peening (SSP) is increasingly considered in the recent years. However, artificial intelligence systems such as artificial neural network (ANN) as an efficient approach instead of costly and time consuming experiments is widely employed to predict and optimize the science and engineering problems in the last decade. In the present study the application of ANN in predicting of... 

    Modeling of severe shot peening effects to obtain nanocrystalline surface on cast iron using artificial neural network

    , Article Materials Today: Proceedings ; Volume 3, Issue 6 , 2016 , Pages 2197-2206 ; 22147853 (ISSN) Maleki, E ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Severe plastic deformation methods such as severe shot peening are used in order to improve mechanical properties of the components by surface microstructure nanocrystallization. Severe shot peening is one of the popular mechanical surface treatments generally aimed at generating nanograined layer and compressive residual stress close to the surface. Moreover, artificial neural network has been used as an efficient approach to predict and optimize the engineering problems. In present study effects of conventional and severe shot peening on cast iron were modelled by means of artificial neural networks and they were compared. The obtained results indicate that severe shot peening has superior... 

    Determination of Fatigue Behavior of Nanostructure of Severe Shot-Peened A356.0

    , M.Sc. Thesis Sharif University of Technology Rahmani, Edris (Author) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    In this study a layer with compressive residual stress was created by severe shot peening and hence surface grains was changed to nanostructure. Fatigue life will be increased as a result of compressive residual stress. Surface roughness increase, is one of the disadvantages of severe shot-peening process. Re-shot-peening with the smaller shots and lower intensity is proposed for reducing surface roughness. Numerical simulation as a powerful method, used to investigate the effects of shot-peening parameters on the residual stress distribution, surface roughness and grain size. Obtained results indicate that more energy in process can improve residual stress distribution and grain size unlike... 

    Experimental Investigation of the Effect of Almen Intensity and Coverage on Microstructure and Fatigue Behavior of High Carbon Steel Subjected to Severe Shot Peening

    , M.Sc. Thesis Sharif University of Technology Maleki, Erfan (Author) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    In most cases, material failures occur on their surfaces, such as fatigue fracture, wear and friction, fretting fatigue and corrosion, so surface modification is one of the most effective techniques to improve the strength of materials. Correction of near surface grain size to nanoscale is one of the effective ways to improve the strength, fatigue life, toughness and etc. With increasing evidences of novel properties in nanostructured materials, it is reasonable to propose to achieve surface modification by the generation of nanostructured surface layer so that the overall properties and behaviors of the material are significantly improved.By means of surface severe plastic deformation, the... 

    High and Low Cycle Fatigue Behavior of Severe Shot Peened Welded Joints

    , M.Sc. Thesis Sharif University of Technology Ahmadikia, Behnam (Author) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    Fatigue failure is deemed as one of the most dominant failure mechanisms of metal components applied in the industry, as in more than 90% of cases which have led to failure, fatigue mechanism has played the major role. Fusion welding is one of the most widespread joining techniques and nowadays is extensively used in various industries including transportation, machine construction, petroleum, and offshore structures. Material properties undergo inevitable changes during welding due to non-uniform heating and cooling as well as addition of a new material and, as a result, an inhomogeneity in the base metal. That being so, investigation of welded joints subjected to cyclic loading that may... 

    Reliability Study of Steel Welded Joints after Post-Weld Heat-Treatment and Shot-peening

    , M.Sc. Thesis Sharif University of Technology Hosseinimehr, Mohammad Ali (Author) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    Welding as one of the widespread joining techniques, is used in shipbuilding industries, steel bridges, water and gas pipelines, and offshore structures. Also, fatigue plays the major role in more than 90% of welded joints failure. Furthermore, their unserviceability due to failure can incur severe monetary consequences. Unlike deterministic approach, utilizing reliability methods in addition to failure and retrofit cost modeling, enable decision making under uncertainty which leads to an optimal decision. The objective of this research is to create a reliability model of weldedjoints after post-weld heat-treatment and shot-peening using related and reliable experimental data. For this... 

    Modelling of conventional and severe shot peening influence on properties of high carbon steel via artificial neural network

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 31, Issue 2 , 2018 , Pages 382-393 ; 1728144X (ISSN) Maleki, E ; Farrahi, G. H ; Sharif University of Technology
    Materials and Energy Research Center  2018
    Abstract
    Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore, artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conventional shot peening (CSP) and severe shot peening (SSP) on properties of AISI 1060 high carbon steel were modelled and compared via ANN. In order to networks training, the back propagation (BP) error algorithm is developed and data of experimental tests results are employed. Experimental data... 

    Plasma nitriding of gradient structured AISI 304 at low temperature: Shot peening as a catalyst treatment

    , Article Vacuum ; Volume 164 , 2019 , Pages 194-197 ; 0042207X (ISSN) Unal, O ; Maleki, E ; Varol, R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This study involves the capability of severe shot peening (SSP) as a catalyst intake for plasma nitriding process and the probability of reducing the requirement of thermal energy individually on the diffusion of interstitial atoms. To this end, combination of mechanical-thermal energy is run with pure thermal plasma assisted energy. Therefore, SSP is exposed to AISI 304 austenitic stainless steel as a former treatment and gradient structured surface (nanograined zone, ultrafine grain martensite-twin intersections zone and twin densed zone) is created. Then, plasma nitriding at 400 0 C-4h and 475 0 C-2h temperature-duration conditions. The condition of 475 0 C-2h provides the requirements of... 

    Surface severe plastically deformed nanostructured aa7075 alloy: assessment on tribological and axial fatigue behaviors

    , Article Journal of Materials Engineering and Performance ; Volume 29, Issue 6 , 2020 , Pages 3774-3783 Efe, Y ; Karademir, I ; Husem, F ; Maleki, E ; Unal, O ; Sharif University of Technology
    Springer  2020
    Abstract
    AA7075 alloy is exposed to severe shot peening (SSP) with an Almen intensity of 20A. The microstructure is analyzed via FEGSEM and EBSD microscopy. X-ray diffraction (XRD) analysis is used to evaluate the crystallite size in terms of FWHM measurements. The residual stress measurements show a thicker compressed layer (600 µm) formed by SSP. Microhardness improvements are observed as 30% on topmost surface and releases substantially after 600 µm. Coefficient of friction (COF) of treated material remains higher throughout the sliding distance, however, is reduced particularly in the early stage of sliding distance for the wear load of 20 N. The effect of SSP is vanished particularly at lower... 

    Effect of severe shot peening on the fatigue life of the laser-cladded Inconel 718 specimens

    , Article International Journal of Advanced Manufacturing Technology ; Volume 104, Issue 5-8 , 2019 , Pages 2619-2631 ; 02683768 (ISSN) Ghorashi, M. S ; Farrahi, G. H ; Movahhedy, M. R
    Springer London  2019
    Abstract
    This paper presents the influence of the severe shot peening process on the fatigue life of the laser-cladded Inconel 718 specimens which can be employed during refurbishment of components enduring high mechanical cyclic loads such as gas turbine components. In order to quantitatively evaluate the destructive effect of laser cladding on the fatigue endurance, fatigue tests are first performed on the as-received and laser-cladded specimens. Then, microstructural analysis by scanning electron microscope (SEM) is carried out to identify the root causes of the drawback of laser cladding. Moreover, by employing a comprehensive laser-cladding FE analysis considering cyclic plastic material... 

    Experimental analysis on the material properties of A356.0 aluminum alloy surface nanostructured by severe shot peening

    , Article Journal of Materials Engineering and Performance ; Volume 29, Issue 1 , 2020 , Pages 143-154 Farrahi, G. H ; Jafarzadeh, H ; Esmaeili, M. A ; Sharif University of Technology
    Springer  2020
    Abstract
    The effects of severe shot-peening process and formation of a nanostructured surface layer on mechanical properties of A356.0 alloy were investigated in this paper. X-ray diffraction analyses revealed that the average size of near-surface grains in severe shot-peened specimens is 75.8 nm. Three types of disk-shaped specimens, non-treated, conventionally shot-peened, and severely shot-peened were subjected to pin-on-disk wear test in the dry condition, in different loading and sliding speeds. Shot-peening process increases both hardness and roughness of the surface, and these two factors have, respectively, positive and negative effects on wear resistance. However, because of high-density...