Loading...
Search for: shaking-table
0.01 seconds
Total 46 records

    Investigating dynamic response of a buried pipeline in sandy soil layer by 1G shaking table test

    , Article International Journal of Civil Engineering ; Volume 8, Issue 2 , 2010 , Pages 107-124 ; 17350522 (ISSN) Jafarzadeh, F ; Farahi Jahromi, H ; Abazari Torghabeh, E ; Sharif University of Technology
    2010
    Abstract
    Investigating the parameters influencing the behavior of buried pipelines under dynamic loading is of great importance. In this study the soil structure interaction of the pipelines with the surrounding soil was addressed using shaking table tests. Wave propagation along the soil layers was also included in the study. The semi infinite nature of the field was simulated using a laminar shear box. The soil used in the experiments was Babolsar coastal sand (Iran). PVC pipes were used due to their analogy with the field. Eight models were constructed with the first four models having uniform base. In the next models, the non-uniformities of real ground were simulated using a concrete pedestal... 

    Applicability of rigid block based approaches in predicting sandy slope displacements by 1g shaking table tests

    , Article Soil Dynamics and Earthquake Engineering ; Volume 126 , 2019 ; 02677261 (ISSN) Jafarzadeh, F ; Farahi Jahromi, H ; Rajabigol, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Various approaches have been developed by researchers to predict earthquake induced landslide displacements. This study evaluates the applicability of these approaches on sandy slopes. For this purpose, nine physical models are constructed inside a rigid box and thirty-six shaking table tests are conducted. Dynamic responses are then converted to the full scale model by applying similitude laws. Five statistical criteria are applied to compare the measured and predicted displacements and evaluate the precision of the approaches. By combining the outcomes and using a scoring procedure, the approaches are scored. Consequently, the approaches of Fotopoulou and Pitilakis [23] and Hsieh and Lee... 

    Experimental study of burial depth effect on embedded pipe deformations in sandy slopes under dynamic landsliding

    , Article Soil Dynamics and Earthquake Engineering ; Volume 114 , 2018 , Pages 281-297 ; 02677261 (ISSN) Farahi Jahromi, H ; Jafarzadeh, F ; Samadian Zakaria, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper studies the influence of burial depth on slope response and pipe performance under earthquake induced landslide. Three physical models are constructed and tested using 1 g shaking table device. The slope is divided into four sections as toe, lower and upper sections of the slope face and crest. The pips which perpendicularly cross the slope are embedded at these positions in three burial depths to demonstrate burial depth effect in each section. According to the experiments, dynamic slope response which moderately develops at deeper depths at toe and lower section, displays a clear downtrend at upper section and crest. Also, the pipe response depends on pipe route and slope... 

    Experimental seismic investigation of Sefid-rud concrete buttress dam model on shaking table

    , Article Earthquake Engineering and Structural Dynamics ; Volume 37, Issue 5 , 2008 , Pages 809-823 ; 00988847 (ISSN) Ghaemmaghami, A. R ; Ghaemian, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2008
    Abstract
    Owing to the devastating M7.6 earthquake of 20 June 1990 that occurred in the northern province of Iran, Sefid-rud concrete buttress dam located near the epicenter was severely shaken. The crack penetrated throughout the dam thickness near slope discontinuity, causing severe leakage, but with no general failure. In this study, nonlinear seismic response of the highest monolith with empty reservoir is investigated experimentally through model testing. A geometric-scaled model of 1:30 was tested on a shaking table with high-frequency capability to study dynamic cracking of the model and serve as data for nonlinear computer model calibration. Three construction joints are set up in the model to... 

    E ectiveness of a vertical micropile system in mitigating the liquefaction-induced lateral spreading e ects on pile foundations: 1 g large-scale shake table tests

    , Article Scientia Iranica ; Volume 29, Issue 3 A , 2022 , Pages 1038-1058 ; 10263098 (ISSN) Kavand, A ; Haeri, S. M ; Raisianzadeh, J ; Afzalsoltani, S ; Sharif University of Technology
    Sharif University of Technology  2022
    Abstract
    Liquefaction-induced lateral spreading caused severe damages to pile foundations during past earthquakes. Micropiles can be used as a mitigation strategy against lateral spreading e ects on pile foundations. However, the available knowledge about the possible efficiency of this strategy is quite limited. In this regard, the present study aims to evaluate the e ectiveness of a vertical micropile system as a lateral spreading countermeasure using large-scale 1 g shake table tests on 3 x 3 pile groups. The results showed that the micropile system was not able to e ectively reduce the bending moments in piles; however, it considerably reduced the lateral soil pressures exerted on the upslope... 

    Study of Dynamic Behavior and Characteristics of shaking Table Using Analytical and Experimental Models

    , M.Sc. Thesis Sharif University of Technology Farzanian, Khashayar (Author) ; Moghaddam, Hassan (Supervisor)
    Abstract
    It is more than a century to study qualitative and quantitative behavior of structures against earthquakes will be benefited from laboratory studies. In fact, the best method for observing the behavior of a structure during an earthquake is earthquake simulation on the structure. Today, the most effective way to do these tests is simulating of earthquake by using of Shaking Table. The shaking table consists of three main parts: electronic, hydraulic and mechanical. The accuracy of earthquake simulation’s results are very important. In recent years, numerous studies on the dynamic behavior of the above components and the interactions between these components are performed. In this study, we... 

    Investigation of Dynamic Response of Buried Pipelines under Earthquake-Induced Landslide using Physical Model Tests

    , M.Sc. Thesis Sharif University of Technology Hadei, Sajjad (Author) ; Jafarzadeh, Fardin (Supervisor)
    Abstract
    The purpose of this dissertation is investigation of dynamic behavior of buried pipelines in slopes in landslide. For this purpose four physical models were made on shaking table of Sharif University of Technology. In each of the models some pipes were buried in slope. In these models the pipes were placed in different angles regarding to slope direction. Simulation laws suggested by Iai (1989) were used in these models. Babolsar sand was used for modeling the slopes. Aluminium pipes with outside diameter of 16 millimeters and thickness of 1 millimeter were implemented to model steel pipelines. In this investigation simple supports were used at the end of the pipes, considering the... 

    Studying Dynamic Response of Landslides Using 1g Shaking Table Tests and Comparing with Analytical Methods

    , M.Sc. Thesis Sharif University of Technology Rajabigol, Morteza (Author) ; Jafarzadeh, Fardin (Supervisor)
    Abstract
    Evaluation of seismic slope stability is very important because it has a decisive role in stimating the earthquake damages. According to the past studies, medium to large earthquakes usually cause thousands landslides and many casulties and financial damages. Since nearly half a century ago, several methods have been developed for predicting the occurrence of landslides and permanent movements, but due to the influnce of many parameters on the seismic stability of the slopes further researches is needed.
    In present study, to investigate the dynamic behavior of the slopes, four physical models of slopes had been made on shaking table in Sharif university of technology. These slopes have 3... 

    Study of the behavior of pile groups during lateral spreading in medium dense sands by large scale shake table test

    , Article International Journal of Civil Engineering ; Vol. 12, Issue. 3 , 2014 , pp. 374-391 ; ISSN: 17350522 Kavand, A ; Haeri, S. M ; Asefzadeh, A ; Rahmani, I ; Ghalandarzadeh, A ; Bakhshi, A ; Sharif University of Technology
    Abstract
    In this paper, different aspects of the behavior of 2×2 pile groups under liquefaction-induced lateral spreading in a 3-layer soil profile is investigated using large scale 1g shake table test. Different parameters of the response of soil and piles including time-histories of accelerations, pore water pressures, displacements and bending moments are presented and discussed in the paper. In addition, distribution of lateral forces due to lateral spreading on individual piles of the groups is investigated in detail. The results show that total lateral forces on the piles are influenced by the shadow effect as well as the superstructure mass attached to the pile cap. It was also found that... 

    Shaking table test on small-scale retrofitted model of Sefid-rud concrete buttress dam

    , Article Earthquake Engineering and Structural Dynamics ; Volume 39, Issue 1 , 2010 , Pages 109-118 ; 00988847 (ISSN) Ghaemmaghami, A. R ; Ghaemian, M ; Sharif University of Technology
    Abstract
    Sefid-rud concrete buttress dam with a height of 106m was damaged during the devastating 1990 Manjil earthquake. The dam was repaired and strengthened using epoxy grouting of cracks and the installation of post-tensioned anchors. In a previous study, nonlinear seismic response of the highest monolith with empty reservoir was investigated experimentally through model testing. A geometric-scaled model of 1:30 was tested on a shaking table to study dynamic cracking of the model. As a result of the similarity between model and prototype cracking pattern, the model was retrofitted according to prototype retrofitting plan after the Manjil earthquake and re-tested on shaking table to estimate the... 

    Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing

    , Article Soil Dynamics and Earthquake Engineering ; Volume 38 , 2012 , Pages 25-45 ; 02677261 (ISSN) Haeri, S. M ; Kavand, A ; Rahmani, I ; Torabi, H ; Sharif University of Technology
    2012
    Abstract
    Liquefaction-induced lateral spreading has imposed severe damages to many important structures supported on pile foundations during past earthquakes. As a result, evaluation of pile response to lateral spreading is an important step towards safe and resistant design of pile foundations against this destructive phenomenon. Current paper aims to study the response of a group of piles subjected to liquefaction-induced lateral spreading using a large scale 1-g shake table test. General test results including time-histories of accelerations, pore water pressures, displacements and bending moments are presented and discussed in this paper. In addition, distribution of lateral soil pressure on... 

    Shake table test of a masonry building retrofitted with shotcrete

    , Article Engineering Structures ; Volume 219 , 2020 Ghezelbash, A ; Beyer, K ; Mohtasham Dolatshahi, K ; Yekrangnia, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper presents the results of a series of shake table tests carried out on a half-scale single-story unreinforced masonry building with asymmetric openings. First, the unretrofitted building is subjected to seven increasing steps of bidirectional seismic excitation. The damaged building is then rehabilitated using steel mesh and shotcrete layer with two walls retrofitted from the exterior face and the other two from the interior face. Afterward, the shake table test is again conducted on the retrofitted specimen in nine increasing excitation levels. Three cases of interior-to-interior, interior-to-exterior, and exterior-to-exterior shotcrete connections are considered at the... 

    Shaking table test for assessing the seismic performance of semi-anchored steel water tanks

    , Article Thin-Walled Structures ; Volume 176 , 2022 ; 02638231 (ISSN) Tavasoli, S ; Shahrouz Sotudeh, A ; Bakhshi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The seismic responses of steel water tanks are unconventional given their complex dynamic behavior and the sources of nonlinearity. Therefore, providing a reliable, finite-element model is instrumental in better understanding their dynamic behavior and improving the design conditions. This paper aims to evaluate the seismic performance of steel water tanks using shaking table tests and provide a finite-element reference model for simulating real-size, semi-anchored water tanks by conducting a series of large-scale tests in the Shaking Table Lab of the Sharif University of Technology (SUT). Since scaling the tank requires a difficult process involving changing the liquid density, this paper... 

    Mechanical Properties and Seismic Performance of Adobe Buildings Using Shake Table Tests

    , M.Sc. Thesis Sharif University of Technology Masaeli, Hamid (Author) ; Ghannad, Mohammad Ali (Supervisor) ; Bakhshi, Ali (Supervisor)
    Abstract
    This thesis contains experimental studies on mechanical properties of adobe and mud material and investigating seismic performance of a conventional adobe house using shake table tests. Mechanical properties of adobe and mud material were studied experimentally based on ASTM and BS standard tests. These experiments were designed to evaluate compressive strength of adobe sun-dried blocks and mud mortar cubes. Besides, shear behavior and tensile bond strength of adobe assemblages were under consideration and shear tests were done on adobe panels. As next part of the research, several shaking table tests were conducted on a dome-roof adobe house as a conventional representative of arch-roof... 

    Investigation on the Effect of Liquefaction-Induced Lateral Spreading on a Flexible Pile Group and Mitigation Measures for These Effects by Physical Modeling

    , M.Sc. Thesis Sharif University of Technology Raisianzadeh, Javad (Author) ; Haeri, Mohesn (Supervisor)
    Abstract
    Liquefaction-induced lateral spreading is a known cause of severe damages to deep foundations during past earthquakes. Lateral spreading often takes place in gently sloping grounds which consisted of saturated loose cohesionless soil deposits. Several researchers during recent years have been studying the behavior of piles and soil-pile interaction under lateral spreading but there are still many unknowns in this regard. Also with observing catastrophic damages during past earthquakes caused by lateral spreading, developing proper mitigation measures for existing vulnerable piles against this phenomenon is a necessary act. In the present research, the behavior of a 3x3 flexible pile group... 

    Physical Modeling to Iimpact of Burial Depth of Pipe in Soil Slopes Under Dynamic Loading

    , M.Sc. Thesis Sharif University of Technology Derakhshan Ghazani, Reza (Author) ; Jafarzadeh, Fardin (Supervisor)
    Abstract
    Buried pipelines as vital arteries,which will play a major role in human life should be designed and implemented in such a way that withstand the least possible harm with regard economic issues.In this study we tried to use a physical model, the impact of pipeline buried in soil slope under dynamic load are examined.To achive this goal we use a rigid metal bax with dimensions of 301.5*101.5*155 cubic meters for modeling. Pipes used in these experiments has a diameter of 1.6 cm which are connected by a fulcrum to the wall box. In order to measure strain generated in the pipe we use a series of strain gauges that were installed using the pipe at some points. Physical models made on Sharif... 

    Physical Modeling of Buried Pipelines Response due to Earthquake-Induced Landslide

    , M.Sc. Thesis Sharif University of Technology Sehizadeh, Mahdi (Author) ; Jafarzadeh, Fardin (Supervisor)
    Abstract
    In this dissertation, the response of buried pipelines in slopes which have become unstable during earthquake induced landslides is investigated. The Sharif University of Technology shaking table was used for modeling this phenomenon.Three tests were performed so that in the first and second ones, three pipes were placed in different positions due to slope and the supports were elastic cylinders. In third test, there were four pipes with simple supports at the test-box walls.The pipes in every test were buried in the depth of 11 centimeters and they were all made of aluminum with the outside diameter of 16 millimeters and thickness of 1 millimeter. Also, they were all in the bending mode due... 

    The Study of Soild Slope Seismic Response using the Physical Model Test on the Shaking Table

    , M.Sc. Thesis Sharif University of Technology Shapourian, Mojtaba (Author) ; Jafarzadeh, Fardin (Supervisor)
    Abstract
    Evaluation of seismic slope stability is very important because it has a decisive role in estimating the earthquake damages. According to the past studies medium to large earthquakes, usually cause thousands landslides and many casualties and financial damages. Since nearly half a century ago, several methods have been developed for predicting the occurrence of landslides and permanent movements, but due to the influence of many parameters on the seismic stability of the slopes further researches is needed.In present study, to investigate the dynamic behavior of the slopes, three physical models of slopes had been made on shaking table in Sharif University of technology. These slopes have... 

    Shake Table Test on Masonry Structures Retrofitted by Shotcrete

    , M.Sc. Thesis Sharif University of Technology Ghezelbash, Amir Hossein (Author) ; Mohtasham Dolatshahi, Kiarash (Supervisor)
    Abstract
    In order to investigate the behavior of unreinforced masonry buildings and the effects of shotcrete retrofit, a half-scale one-story masonry building was constructed and tested on the shake-table of Earthquake Research Center at Sharif University of Technology (SUT), Iran. The project was jointly founded by SUT and Ecole Polytechnique Fédérale de Lausanne (EPFL), with the support of The Organization for Development, Renovation, and Equipping of Schools of I.R Iran (DRES). The 3.7×3.7×2 [m] specimen was modeled after a typically built classroom, with eccentric window openings on one wall and a door opening on the opposite wall. The walls were constructed using half-scale 10.5×5.0×2.9 [cm]... 

    An Investigation on the Effects of Liquefaction Induced Lateral Spreading on Deep Foundations and Development of Mitigation Measures Using 1g Shake Table Tests

    , Ph.D. Dissertation Sharif University of Technology Kavand, Ali (Author) ; Haeri, Mohsen (Supervisor) ; Rahmani, Iraj (Co-Advisor)
    Abstract
    Liquefaction induced lateral spreading is defined as the lateral displacement of mildly sloping grounds or those ending in free faces as a result of liquefaction in subsurface soil layers. Damages imposed by lateral spreading on pile foundations supporting different types of structures such as ports, bridges and buildings are usually observed in large earthquakes. These potential damages are of high degree of importance in southern and northern coastal areas of Iran where several ports and critical facilities are located. River banks all over the country where bridge piers exist are also among the areas prone to potential damages. Evaluation of the effects of lateral spreading on existing...