Loading...
Search for: shape-memory
0.008 seconds
Total 177 records

    Recent advances in the applications of shape memory alloys in civil infrastructures: A review

    , Article Structures ; Volume 27 , 2020 , Pages 1535-1550 Zareie, S ; Issa, A. S ; Seethaler, R. J ; Zabihollah, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Shape Memory Alloys (SMAs) are a new generation of smart materials with the capability of recovering their predefined shape after experiencing a large strain. This is mainly due to the shape memory effects and the superelasticity of SMA. These properties make SMA an excellent alternative to be used in passive, semi-active, and active control systems in civil engineering applications. This paper presents a comprehensive review of the recent developments in the applications of SMA in civil infrastructures, including, steel, concrete, and timber structures. This review reveals the significance of SMA in civil infrastructures particularly, the enhancement of structural behavior and energy... 

    Mechanical response of single and double-helix SMA wire ropes

    , Article Mechanics of Advanced Materials and Structures ; Volume 29, Issue 26 , 2022 , Pages 5393-5406 ; 15376494 (ISSN) Vahidi, S ; Arghavani, J ; Choi, E ; Ostadrahimi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, based on three-dimensional phenomenological model and using a user-defined material subroutine mechanical behavior of shape memory alloy (SMA) wire ropes (or cables) and their components have been studied through implicit solution method in Abaqus software. Material parameters have been extracted using available experimental data and numerical simulations. Due to the convoluted geometry and interwire contact status within a cable, a finite element analysis is firstly performed for a 1 × 37 steel wire rope to validate modeling and mechanical interactions of a wire rope. Afterwards, superelastic and shape memory effect cables with different constructions (7 × 7 and 1 × 27) are... 

    Dynamic modeling of a new varying stress SMA actuator for precise applications

    , Article Proceedings of the IEEE International Conference on Mechatronics 2004, ICM'04, Istanbul, 3 June 2004 through 5 June 2004 ; 2004 , Pages 209-214 ; 0780385993 (ISBN) Alasty, A ; Shameli, E ; Sharif University of Technology
    2004
    Abstract
    Shape Memory Alloys (SMA's) are inherently non-linear devices exhibiting significant hysteresis in their stress-strain-temperature characteristic. We have used the variable sub-layer SMA model of Ikuta [3] to extract the advanced dynamic model of our proposed varying stress SMA actuator. A nonlinear finite element analysis was used to model the proposed bending spring in the actuator and the extended variable sub-layer model of Ikuta was considered to extract stress-displacement relations. Finally, these two models are combined with thermo dynamic model of SMA and a schematic flowchart is proposed to calculate SMA resultant strain under an arbitrary current input. At the end, we applied this... 

    Shape memory alloy in tension and compression and its application as clamping-force actuator in a bolted joint: Part 1 - Experimentation

    , Article Journal of Intelligent Material Systems and Structures ; Volume 15, Issue 8 , 2004 , Pages 577-587 ; 1045389X (ISSN) Hesse, T ; Ghorashi, M ; Inman, D. J ; Sharif University of Technology
    2004
    Abstract
    In recent years, there have been some endeavors in order to characterize and model Shape Memory Alloy (SMA) behavior both in tension and compression. However, the one-dimensional behavior of SMA has been mostly studied for the case of wire elements subjected to tension. The objective of this paper is to analyze the behavior of Ni-55.7% wt Ti SMA in tension, compression, and at various temperatures. The effects of cycling, annealing, and friction on the mechanical behavior of this material in compression are discussed as well and, where applicable, compared to those of tension. The compressed SMA rings are finally used as clamping-force actuators in loosed bolted joints. In the second part of... 

    An improved, fully symmetric, finite-strain phenomenological constitutive model for shape memory alloys

    , Article Finite Elements in Analysis and Design ; Volume 47, Issue 2 , 2011 , Pages 166-174 ; 0168874X (ISSN) Arghavani, J ; Auricchio, F ; Naghdabadi, R ; Reali, A ; Sharif University of Technology
    2011
    Abstract
    The ever increasing number of shape memory alloy applications has motivated the development of appropriate constitutive models taking into account large rotations and moderate or finite strains. Up to now proposed finite-strain constitutive models usually contain an asymmetric tensor in the definition of the limit (yield) function. To this end, in the present work, we propose an improved alternative constitutive model in which all quantities are symmetric. To conserve the volume during inelastic deformation, an exponential mapping is used to arrive at the time-discrete form of the evolution equation. Such a symmetric model simplifies the constitutive relations and as a result of less... 

    An investigation on thermomechanical flexural response of shape-memory-polymer beams

    , Article International Journal of Applied Mechanics ; Volume 8, Issue 5 , 2016 ; 17588251 (ISSN) Molaaghaie Roozbahani, M ; Heydarzadeh, N ; Baghani, M ; Eskandari, A. H ; Baniassadi, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2016
    Abstract
    In this paper, the predictions of different beam theories for the behavior of a shape memory polymer (SMP) beam in different steps of a thermomechanical cycle are compared. Employing the equilibrium equations, the governing equations of the deflection of a SMP beam in the different steps of a thermomechanical cycle, for higher order beam theories (Timoshenko Beam Theory and von-Kármán Beam Theory), are developed. For the Timoshenko Beam Theory, a closed form analytical solution for various steps of the thermomechanical cycle is presented. The nonlinear governing equations in von-Kármán Beam theory are numerically solved. Results reveal that in the various beam length to beam thickness... 

    Experimental and Numerical Study of a Shape Memory Alloy Wire Rope Behavior in Release Mechanism

    , M.Sc. Thesis Sharif University of Technology Malekian, Ali (Author) ; Naghdabadi, Reza (Supervisor) ; Arghavani Hadi, Jamal (Supervisor)
    Abstract
    Smart materials are able to change their physical properties under various environmental conditions. Shape memory alloys (SMA) are relatively new smart materials that can respond to environmental stimuli e.g., heat, electricity, etc. Unique behaviors of SMAs, called shape memory effect and superelasticity, have motivated many applications in various fields of study (aerospace, medical, civil engineering, etc.). Although the behavior of SMAs is complicated, modeling and utilizing these materials have been receiving much attention in the past 20 years. Since a cable tolerate more tension than a wire or rod, the shape memory alloy cables could have a broad range of potential applications.... 

    An improvement on the Brinson model for shape memory alloys with application to two-dimensional beam element

    , Article Journal of Intelligent Material Systems and Structures ; Volume 25, Issue 15 , 1 October , 2014 , Pages 1905-1920 ; ISSN: 1045389X Poorasadion, S ; Arghavani, J ; Naghdabadi, R ; Sohrabpour, S ; Sharif University of Technology
    Abstract
    In this article, the one-dimensional phenomenological constitutive model originally proposed by Brinson for shape memory alloys is improved to predict asymmetric behavior in tension and compression. We propose an approach that decomposes stress-induced martensite volume fraction into two parts, one in tension and one in compression. Results of numerical examples show reasonable agreement with experimental data. Moreover, we implement the proposed model in a user-defined material subroutine in the nonlinear finite element software ABAQUS/Standard as a two-dimensional Euler-Bernoulli beam element. We simulate several beam problems and a shape memory alloy staple. Regarding the results, the... 

    Analytical modeling of a Minimally Invasive Surgery grasper actuated by shape memory alloy wires

    , Article International Conference on Robotics and Mechatronics, ICRoM 2013 ; Feb , 2013 , Pages 147-151 ; 9781467358118 (ISBN) Shahriari, M ; Zabihollah, A ; Sharif University of Technology
    2013
    Abstract
    Minimally Invasive Surgery (MIS) is getting common these days. MIS robots using special tools can perform surgery precisely as humans. This is only possible with dexterous end-effectors and a well-controlled system. Local, lightweight and powerful actuators positioned at end-effectors provide the ability to decrease the degrees of freedom and simplify the design. This paper discusses a grasper design actuated by Shape Memory Alloy (SMA) wires that can be used in MIS robotics. The properties of a commercially available shape memory alloy are explored and analytical formulations for the actuation procedure are developed. The grasper actuated by SMA wires is studied and the procedure of... 

    A large deformation framework for shape memory polymers: Constitutive modeling and finite element implementation

    , Article Journal of Intelligent Material Systems and Structures ; Volume 24, Issue 1 , 2013 , Pages 21-32 ; 1045389X (ISSN) Baghani, M ; Naghdabadi, R ; Arghavani, J ; Sharif University of Technology
    2013
    Abstract
    Shape memory polymers commonly experience both finite deformations and arbitrary thermomechanical loading conditions in engineering applications. This motivates the development of three-dimensional constitutive models within the finite deformation regime. In the present study, based on the principles of continuum thermodynamics with internal variables, a three-dimensional finite deformation phenomenological constitutive model is proposed taking its basis from the recent model in the small strain regime proposed by Baghani et al. (2012). In the constitutive model derivation, a multiplicative decomposition of the deformation gradient into elastic and inelastic stored parts (in each phase) is... 

    A 3D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation

    , Article Continuum Mechanics and Thermodynamics ; Volume 22, Issue 5 , June , 2010 , Pages 345-362 ; 09351175 (ISSN) Arghavani, J ; Auricchio, F ; Naghdabadi, R ; Reali, A ; Sohrabpour, S ; Sharif University of Technology
    2010
    Abstract
    Most devices based on shape memory alloys experience both finite deformations and non-proportional loading conditions in engineering applications. This motivates the development of constitutive models considering finite strain as well as martensite variant reorientation. To this end, in the present article, based on the principles of continuum thermodynamics with internal variables, a three-dimensional finite strain phenomenological constitutive model is proposed taking its basis from the recent model in the small strain regime proposed by Panico and Brinson (J Mech Phys Solids 55:2491-2511, 2007). In the finite strain constitutive model derivation, a multiplicative decomposition of the... 

    Sputter alloying of Ni, Ti and Hf for fabrication of high temperature shape memory thin films

    , Article Materials Science and Technology ; Volume 23, Issue 8 , 2007 , Pages 987-991 ; 02670836 (ISSN) Sanjabi, S ; Sadmezhaad, K ; Barber, Z. H ; Sharif University of Technology
    2007
    Abstract
    In the present paper, the fabrication and characterisation of typical high temperature Ni(Ti+ Hf) alloyed thin films produced by simultaneous sputter deposition from separate elemental Ni, Ti and Hf targets are presented. Film composition, determined by energy dispersive X-ray spectroscopy, was controlled by adjusting the ratio of powers applied to each target. Films deposited at room temperature had an amorphous structure and subsequent annealing at 550°C was carried out in a high vacuum environment, based on crystallisation temperature evaluation by differential scanning calorimetry (DSC). High temperature martensitic transformation, confirmed by DSC and variable temperature X-ray... 

    Microstructural investigation of hard phases in as-cast Ni-Ti memory alloy

    , Article Praktische Metallographie/Practical Metallography ; Volume 42, Issue 9 , 2005 , Pages 454-469 ; 0032678X (ISSN) Badakhshan Raz, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Carl Hanser Verlag  2005
    Abstract
    Ti4Ni2O, Ti4Ni2N, TiC and Ti2Ni are brittle compounds usually formed during production and processing of the Ti-Ni SMA alloys. These compounds adversely affect on workability and shape memory properties of the alloy. This paper presents most recent findings related to the morphologies of various inclusions and Ti-Ni phases formed during and after vacuum induction melting and casting of Ti-45wt.% Ni material. Cast samples were mechanically and/or electrolytically polished and etched. Extensive optical and scanning electron microscopic studies were carried out to characterize the composition and microstructure of the as cast Ti-Ni alloys. Results indicated that mechanical polishing followed by... 

    Characterization of constrained aged niti strips for using in artificial muscle actuators

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 24, Issue 4 , 2011 , Pages 321-329 ; 17281431 (ISSN) Hassanzadeh Nemati, N ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    Marvelous bending/straightening effects of two-way shape memory alloy (TWSMA) help their employment in design and manufacturing of new medical appliances. Constrained ageing with bending load scheme can induce two-way shape memory effect (TWSME). Scanning electron microscopic (SEM) analysis, electrical resistivity measurement (ERM) and differential scanning calorimetry (DSC) are employed to determine the property change due to flat strip constrained aging. Results show that flat-annealing prior to the aging shifts NiTi transformations temperatures to higher values. Superelastic behavior of the as-received/flat- annealed/aged samples with more adequate transition temperatures due to... 

    Study of behavior of reinforced concrete beams with smart rebars using finite element modeling

    , Article International Journal of Civil Engineering ; Volume 8, Issue 3 , September , 2010 , Pages 221-231 ; 17350522 (ISSN) Khaloo, A. R ; Eshghi, I ; Piran Aghl, P ; Sharif University of Technology
    2010
    Abstract
    In this paper the response of cantilevered reinforced concrete (RC) beams with smart rebars under static lateral loading has been numerically studied, using Finite Element Method. The material used in this study is SuperelasticShape Memory Alloys (SE SMAs) which contains nickel and titanium elements. The SE SMA is a unique alloy that has the ability to undergo large deformations and return to their undeformed shape by removal of stresses. In this study, different quantities of steel and smart rebars have been used for reinforcement andthe behavior of these models under lateral loading, including their load-displacement curves, residual displacements, and stiffness, were discussed. During... 

    A novel inertial energy harvester using magnetic shape memory alloy

    , Article Smart Materials and Structures ; Volume 25, Issue 10 , 2016 ; 09641726 (ISSN) Askari Farsangi, M. A ; Sayyaadi, H ; Zakerzadeh, M. R ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    This paper studies the output voltage from a novel inertial energy harvester using magnetic shape memory alloys (MSMAs). The MSMA elements are attached to the root of a cantilever beam by means of two steps. In order to get electrical voltage, two coils are wound around the MSMAs and a shock load is applied to a tip mass at the end of the beam to have vibration in it. The beam vibration causes strain in the MSMAs along their longitudinal directions and as a result the magnetic flux alters in the coils. The change of magnetic flux in the surrounding coil produces an AC voltage. In order to predict the output voltage, the nonlinear governing equations of beam motion based on Euler-Bernoulli... 

    Effect of post weld heat treatment on mechanical and corrosion behaviors of niTi and stainless steel laser-welded wires

    , Article Journal of Materials Engineering and Performance ; 2016 , Pages 1-8 ; 10599495 (ISSN) Mirshekari, G. R ; Saatchi, A ; Kermanpur, A ; Sadrnezhaad, S. K ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    Effects of post weld heat treatment (PWHT) on mechanical properties and corrosion behavior of NiTi shape memory wire, laser welded to the 304 stainless steel wire were investigated. The results showed that PWHT at 200 °C increased corrosion resistance and tensile strength of the joint up to ~1.8 times that of the as-weld joint, with no heat treatment. On the contrary, precipitation of neoteric intermetallic compounds like Fe2Ti, Cr2Ti, FeNi, Ni3Ti, and Ti2Ni in the welded region deteriorated these properties, when PWHT was conducted at 400 °C. Due to the vital effects of the PWHT performed after the laser welding, careful control of the PWHT temperature was found to be a prerequisite for... 

    Energy harvesting from plate using magnetic shape memory alloys

    , Article Proceedings of the 6th RSI International Conference on Robotics and Mechatronics, IcRoM 2018, 23 October 2018 through 25 October 2018 ; 2019 , Pages 229-235 ; 9781728101279 (ISBN) Sayyaadi, H ; Naderi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Ferromagnetic shape memory alloys (FSMA) are new class of smart material and have been investigated for sensor and actuator and energy harvester applications.this paper presents the basis for a novel pressure sensor based on ferromagnetic shape memory alloys. Underlying mechanism for sensing applications is martensitic reorientation accompanied by a chang of magnetization of plate. When this alloy, is exposed in an external magnetic field or stress, has change of magnetization in result.the change in the magnetization of the alloy in accordance with the Faraday induction law, in the wires of the coil leads to the induction voltage. In this paper, a phenomenological constitutive structural... 

    Multiphysics modeling of an MSMA-based clamped-clamped inertial energy harvester

    , Article Smart Materials and Structures ; Volume 28, Issue 3 , 2019 ; 09641726 (ISSN) Askari Farsangi, M. A ; Zakerzadeh, M. R ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    In this paper, an alternative way of harvesting energy from ambient vibration is investigated through proposing a novel inertial energy harvester using magnetic shape memory alloys (MSMAs). To this end, a clamped-clamped beam is coupled with MSMA units which are attached to its roots. A shock load is applied to a proof mass in the middle of the beam. The beam vibration causes longitudinal strain in the MSMAs and as a result the magnetic flux alters in the coils wounding around the MSMA units and produce an AC voltage. To have a reversible strain in MSMAs, a bias magnetic field is applied in transverse direction of the MSMA units. The large scale vibration of Euler-Bernoulli beam is modeled... 

    A novel shape memory alloy-based element for structural stability control in offshore structures under cyclic loading

    , Article Ships and Offshore Structures ; Volume 15, Issue 8 , 2020 , Pages 844-851 Zareie, S ; Alam, M. S ; Seethaler, R. J ; Zabihollah, A ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Wind and ocean waves highly influence the performance and functionality of structures, requiring an efficient control element. The structural behavior of one of the most recent structural control elements, namely shape memory alloys (SMA)-based control element, under cyclic loadings of oceans waves, has been investigated. Shape memory alloys are one of the attractive smart materials with the ability to return to the initial shape after experiencing large deformation. Experimental tests have been conducted to study the effects of cyclic loads on several specimens of the SMA wires. The SMA wires are being used in the SMA-based structural control system to dissipate the energy of external...