Loading...
Search for: shape-memory-alloys--sma
0.007 seconds

    Development of a new mechanism to change velocity in a helical swimmer robot at low Reynolds number

    , Article Scientia Iranica ; Volume 25, Issue 5B , 2018 , Pages 2616-2627 ; 10263098 (ISSN) Sayyaadi, H ; Bahmanyar, Sh ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    This paper presents a new mechanism with unique and prominent features for a helical swimmer robot. "Double Helices Propulsion Mechanism" consists of two parallel helices with a single axis rotating in the same direction. The outer helix acts as the main propulsion component, and the inner helix, which is made of a Shape Memory Alloy (SMA), controls the forward velocity during swimming. This mechanism, by varying the geometrical parameters of its helical tail, can change the forward velocity of the helical swimmer robot that is required by its predefined missions. In order to study the effects of geometric parameters on the forward velocity in the single helical swimmer, a hydrodynamic model... 

    Ingredient losses during melting binary Ni-Ti shape memory alloys

    , Article Journal of Materials Science and Technology ; Volume 21, Issue 4 , 2005 , Pages 484-488 ; 10050302 (ISSN) Sadrnezhaad, S. K ; Badakhshan Raz, S ; Sharif University of Technology
    2005
    Abstract
    Losses of the alloying elements during vacuum induction melting of the binary NiTi alloys were evaluated by visual observation and chemical analysis of the NiTi melted specimens and the scalp formed on the internal surface of the crucible. The results indicated that the major sources of the losses were (a) evaporation of the metals, (b) formation of the NiTi scalp and (c) the sprinkling drops splashed out of the melt due to the exothermic reactions occurring between Ni and Ti to form the NiTi parent phase. Quantitative evaluations were made for the metallic losses by holding the molten alloy for 0.5, 3, 5, 10 and 15 min at around 100°C above the melting point inside the crucible. Chemical... 

    An analytical study on the bending of prismatic SMA beams

    , Article Smart Materials and Structures ; Volume 24, Issue 12 , 2015 ; 09641726 (ISSN) Ostadrahimi, A ; Arghavani, J ; Poorasadion, S ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    In this study, an analytical solution is presented for pure bending of shape memory alloy (SMA) beams with symmetric cross section as well as symmetric behavior in tension and compression. To this end, a three-dimensional constitutive equation is reduced to one-dimensional form and employed to study the bending response of SMA beams at high (pseudo-elasticity) and low (shape memory effect) temperatures. An analytical expression for bending stress as well as polynomial approximation for shear stress and deflection are obtained. Derived equations for bending are employed to analyze an SMA beam with rectangular cross section and results are compared with those of the finite element method. The... 

    A novel preisach based neural network approach to hysteresis non-linearity modeling

    , Article Proceedings of the 2010 International Conference on Artificial Intelligence, ICAI 2010, 12 July 2010 through 15 July 2010, Las Vegas, NV ; Volume 1 , 2010 , Pages 299-305 ; 9781601321480 (ISBN) Firouzi, M ; Ghomi Rostami, M ; Bagheri Shouraki, S ; Iloukhani, M ; Sharif University of Technology
    2010
    Abstract
    In some systems with hysteresis behavior like Shape Memory Alloy (SMA) actuators and Piezo actuators, we essentially need an accurate modeling of hysteresis either for controller design or performance evaluation. One of the most interesting Hysteresis non-linearity identification methods is Preisach model in which hysteresis is modeled by linear combination of elemental operators. Despite good ability of Preisach modeling to extract main features of system with hysteresis behavior, cause of tough numerical nature of Preisach, it is not convenient to use in real-time control applications. In this paper we present a novel method based on Artificial Neural Network. For evaluation of proposed... 

    Hysteresis nonlinearity identification by using RBF neural network approach

    , Article Proceedings - 2010 18th Iranian Conference on Electrical Engineering, ICEE 2010, 11 May 2010 through 13 May 2010 ; 2010 , Pages 692-697 ; 9781424467600 (ISBN) Firouzi, M ; Bagheri Shouraki, S ; Zakerzadeh, M. R ; Sharif University of Technology
    Abstract
    In systems with hysteresis behavior like magnetic cores, Piezo actuators, Shape Memory Alloy(SMA), we essentially need an accurate modeling of hysteresis either for design or performance evaluation; also in some control applications accurate system identification is needed. One of the famous methods of Hysteresis modeling is Preisach model. In this numerical method hysteresis is modeled by linear combination of smaller hysteresis loops as an elemental operator and local memory. In this paper we discuss those Radial Base artificial neural networks (RBF) which provides natural settings in accordance with the Preisach model. It is shown that the proposed approach can represent hysteresis... 

    Numerical study of an innovative SMA based beam-column connection in reducing the seismic response of steel MRF structures

    , Article Scientia Iranica ; Volume 23, Issue 5 , 2016 , Pages 2033-2043 ; 10263098 (ISSN) Rofooei, F. R ; Yadegari Farzaneh, A ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    During recent years, Shape Memory Alloys (SMAs) have been effectively used to control the seismic response of structural systems. Recovering the residual strains upon unloading (super-elasticity) or by heating (shape memory effect) is the main characteristic of SMA materials. This paper explores the efficiency of a proposed application of steel & SMA bolts in improving the seismic behavior of connections in steel Moment Resisting Frame (MRF) structures. A new semi-rigid, end-plate, beam-column connection is introduced, which is based on parallel application of steel and austenite-phase SMA bolts. A number of 3-D steel MRF structural models with different numbers of stories and mass... 

    A novel shape memory alloy-based element for structural stability control in offshore structures under cyclic loading

    , Article Ships and Offshore Structures ; Volume 15, Issue 8 , 2020 , Pages 844-851 Zareie, S ; Alam, M. S ; Seethaler, R. J ; Zabihollah, A ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Wind and ocean waves highly influence the performance and functionality of structures, requiring an efficient control element. The structural behavior of one of the most recent structural control elements, namely shape memory alloys (SMA)-based control element, under cyclic loadings of oceans waves, has been investigated. Shape memory alloys are one of the attractive smart materials with the ability to return to the initial shape after experiencing large deformation. Experimental tests have been conducted to study the effects of cyclic loads on several specimens of the SMA wires. The SMA wires are being used in the SMA-based structural control system to dissipate the energy of external... 

    A study of pre-straining shape memory alloy (SMA)-based control elements subject to large-amplitude cyclic loads

    , Article Ships and Offshore Structures ; 2020 Zareie, S ; Zabihollah, A ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Dynamic environmental loads, such as winds and waves, make the stability of offshore structures at high risk, requiring reliable yet efficient control elements to ensure the stability of such structures under lateral loads. Among the variety of control elements that have been developed to enhance the stability of a structure, shape memory alloy (SMA)-based control elements are promising as they are low-cost, easy to embed into the main control element, and do not need an external power supply. However, cyclic loads may highly influence the performance and functionality of SMA-based elements. The present work investigates the effects of pre-straining SMA components in energy dissipation... 

    Investigation on the seismic behavior of steel MRF with shape memory alloy equipped connections

    , Article Procedia Engineering ; Volume 14 , 2011 , Pages 3325-3330 ; 18777058 (ISSN) Rofooei, F. R ; Farhidzadeh, A ; Sharif University of Technology
    2011
    Abstract
    Shape Memory Alloys (SMA) are among the new passive control devices that have gained a large attention due to its inherent features, i.e., recovering the induced residual strains upon unloading (superelastic effect) or by heating (shape memory effect). In this work, the seismic behavior of a set of steel structural models with different number of stories and eccentricities equipped with a type of fixed SMA connections is investigated. Considering an existing SMA connection model in austenite phase, the related moment-rotation behavior is verified through numerical simulation. Then, extensive nonlinear dynamic analyses are performed using a number of 3, 6, 9, and 12 story structural models... 

    Hysteresis identification of shape memory alloy actuators using a novel artificial neural network based Presiach model

    , Article ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010, 28 September 2010 through 1 October 2010 ; Volume 1 , 2010 , Pages 653-660 ; 9780791844151 (ISBN) Zakerzadeh, M. R ; Firouzi, M ; Sayyaadi, H ; Bagheri Shouraki, S ; Sharif University of Technology
    Abstract
    In systems with hysteresis behavior like Shape Memory Alloy (SMA) actuators and Piezo actuators, an accurate modeling of hysteresis behavior either for performance evaluation and identification or controller design is essentially needed. One of the most interesting hysteresis none-linearity identification methods is Preisach model which the hysteresis is modeled by linear combination of hysteresis operators. In spite of good ability of the Preisach model to extract the main features of system with hysteresis behavior, due to its numerical nature, it is not convenient to use in real time control applications. In this paper a novel artificial neural network (ANN) approach based on the Preisach... 

    Stability control of a novel frame integrated with an SMA-MRF control system for marine structural applications based on the frequency analysis

    , Article Applied Ocean Research ; Volume 97 , 2020 Zareie, S ; Alam, M. S ; Seethaler, R. J ; Zabihollah, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Structural integrity and ensuring the stability of steel frame structures, including marine and coastal structures, are the main challenges for designers in civil infrastructures, particularly in oil platforms, subjected to tough periodic and non-periodic environmental loading conditions. Variable loadings with different amplitudes and frequencies may lead to the stability of steel structures loss. In order to keep the stability of the steel structures and prevent possible damages, reliable yet efficient structural control systems are in demand. Conventional structural control systems need significant activation energy and/or in-depth users knowledge to be effective. Most recently, smart... 

    Modeling of a nonlinear Euler-Bernoulli flexible beam actuated by two active shape memory alloy actuators

    , Article Journal of Intelligent Material Systems and Structures ; Volume 22, Issue 11 , 2011 , Pages 1249-1268 ; 1045389X (ISSN) Zakerzadeh, M. R ; Salehi, H ; Sayyaadi, H ; Sharif University of Technology
    2011
    Abstract
    There are two different ways of using shape memory alloy (SMA) wire as an actuator for shape control of flexible structures: it can be either embedded within the composite laminate or externally attached to the structure. As the actuator can be placed at different offset distances from the beam, external actuators produce more bending moment and, consequently, considerabnle shape changes with the same magnitude of actuation force compared with the embedded type. Such a configuration also provides faster heat transfer rate owing to convection, which is very important in shape control applications that require a highfrequency response of SMA actuators. Although combination and physics-based... 

    Effect of shape memory alloy-magnetorheological fluid-based structural control system on the marine structure using nonlinear time-history analysis

    , Article Applied Ocean Research ; Volume 91 , 2019 ; 01411187 (ISSN) Zareie, S ; Alam, M. S ; Seethaler, R. J ; Zabihollah, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Marine structures, as key elements in the global energy network, constantly are subjected to harsh environmental loading conditions. Therefore, reliable yet efficient structural control mechanisms are required to ensure their safe functionality and structural stability. In the present work, a novel hybrid structural control element for marine structures has been designed in which the superelasticity effect of shape memory alloy (SMA) and damping controllability of magnetorheological fluid (MRF), as smart materials, have been combined. The novel system does not require huge external energy for activation and in addition, the system has the ability to be tuned for variable loading conditions....