Loading...
Search for: shear-property
0.012 seconds

    Experimental investigation on effects of elastomer components on dynamic and mechanical properties in seismic isolator compounds

    , Article Construction and Building Materials ; Volume 135 , 2017 , Pages 267-278 ; 09500618 (ISSN) Abedi Koupai, S ; Bakhshi, A ; Valadoust Tabrizi, V ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Elastomeric bearings are becoming a preferred device for isolating bridges, buildings, and sensitive equipment structures. The technical specifications used to procure these isolators are considered as important factors for the consumers. Lack of communication between structural engineers and rubber technologists, causes structural engineers have slight understanding of rubber properties. In the present study, a number of compounds were initially designed and manufactured, based on a previously studied and manufactured isolator compound. The outcome of the experiments indicated the physical and mechanical properties. Afterwards, the targeted improvement led to modification of the compounds... 

    Aeroelastic instability of aircraft composite wings in an incompressible flow

    , Article Composite Structures ; Volume 83, Issue 1 , 2008 , Pages 93-99 ; 02638223 (ISSN) Haddadpour, H ; Kouchakzadeh, M. A ; Shadmehri, F ; Sharif University of Technology
    2008
    Abstract
    The aeroelastic stability of an aircraft wing modeled as an anisotropic composite thin-walled beam in an incompressible flow is investigated. The wing is built-up as a single-cell box beam whose central point is noncoincident with the mid-chord of the profile. The effects of material anisotropy, transverse shear, warping inhibition, nonuniform torsional model and rotary inertia are considered in the structural model. The unsteady incompressible aerodynamics based on Wagner's function is used to determine the aerodynamic loads. The effects of the offset between reference axis and the mid-chord ("a" parameter), fiber orientation and sweep angle on stability boundary are considered, their... 

    A thermoelasticity solution of sandwich structures with functionally graded coating

    , Article Composites Science and Technology ; Volume 67, Issue 6 , 2007 , Pages 1073-1080 ; 02663538 (ISSN) Shodja, H. M ; Haftbaradaran, H ; Asghari, M ; Sharif University of Technology
    2007
    Abstract
    An exact thermoelasticity solution for a two-dimensional thick composite consisting of homogeneous and functionally graded layers is presented. The thermomechanical properties of functionally graded layers are assumed to vary exponentially through the thickness while the Poisson's ratio is taken to be constant. The heat transfer problem is solved under steady state condition accounting for the heat convection. Utilizing the stress function the governing equation reduces to a fourth order inhomogeneous partial differential equation which is solved exactly using Fourier series method. A comparative study is done between two sandwich structures with homogeneous and functionally graded coatings,... 

    Interlaminar stresses in antisymmetric angle-ply laminates

    , Article Composite Structures ; Volume 78, Issue 1 , 2007 , Pages 18-33 ; 02638223 (ISSN) Nosier, A ; Bahrami, A ; Sharif University of Technology
    2007
    Abstract
    Based on elasticity theory the reduced form of displacement field is developed for long antisymmertic angle-ply composite laminates subjected to extensional and/or torsional loads. Analytical solutions to the edge-effect problem of such laminates under a uniform axial strain are developed using the first-order shear deformation theory of plates and Reddy's layerwise theory. For a special set of boundary conditions an elasticity solution is presented to verify the validity and accuracy of the layerwise theory. Various numerical results are then developed within the layerwise theory for the interlaminar stresses through the thickness and across the interfaces of antisymmetric angle-ply... 

    Nonlinear analysis of FGM plates under pressure loads using the higher-order shear deformation theories

    , Article Composite Structures ; Volume 89, Issue 3 , 2009 , Pages 333-344 ; 02638223 (ISSN) Sarfaraz Khabbaz, R ; DehghanManshadi, B ; Abedian, A ; Sharif University of Technology
    2009
    Abstract
    In this study, the energy concept along with the first- and third-order shear deformation theories (FSDT and TSDT) are used to predict the large deflection and through the thickness stress of FGM plates. These responses are studied and discussed as a function of plate thickness and the order "n" of a power law function which is considered for the through the thickness variation of the properties of the FGM plate. The results show that the energy method powered by the FSDT and FSDT is capable of predicting the effects of plate thickness on the deformation and the through the thickness stress. Here, also the effects of power "n" on the plate response is clearly depicted. Notably, the... 

    Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory

    , Article Composite Structures ; Volume 92, Issue 8 , 2010 , Pages 1865-1876 ; 02638223 (ISSN) Ghafoori, E ; Asghari, M ; Sharif University of Technology
    2010
    Abstract
    The dynamic response of angle-ply laminated composite plates traversed by a moving mass or a moving force is investigated. For this purpose, a finite element method based on the first-order shear deformation theory is used. Stationary and adaptive mesh techniques have been applied as two different meshing schemes. The adaptive mesh strategy is then used to avoid off-nodal position of moving mass. In this manner, the finite element mesh is continuously adapted to follow and comply with the path of moving mass. A Newmark direct integration method is employed to solve the equations of motion. Parametric study is directed to find out how different parameters like mass of the moving object as...