Loading...
Search for: silicate-phosphate-glass
0.012 seconds

    The fabrication and characterization of bioactive Akermanite/Octacalcium phosphate glass-ceramic scaffolds produced via PDC method

    , Article Ceramics International ; 2020 Abdollahi, S ; Paryab, A ; Khalilifard, R ; Anousheh, M ; Malek Khachatourian, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present study, a bioactive silicate-phosphate glass-ceramic scaffold was fabricated via the polymer-derived ceramics (PDC) method. K2HPO4 phosphate salt was used as the P2O5 precursor in this method. The effect of K2HPO4 wt% and heat treatment temperatures (900–1100 °C) was evaluated. It was observed that although increasing the wt% of K2HPO4 led to the formation of scaffolds with higher densities and strengths, it could also increase the formation of the calcium phase, which could result in improper release behavior of scaffolds. On the other hand, higher heat treatment temperatures enhanced the strength of the scaffolds but eliminated the bioactive octacalcium phosphate (OCP) phase.... 

    The effect of Ag incorporation on the characteristics of the polymer derived bioactive silicate phosphate glass-ceramic scaffolds

    , Article Boletin de la Sociedad Espanola de Ceramica y Vidrio ; 2021 ; 03663175 (ISSN) Paryab, A ; Godary, T ; Khalilifard, R ; Malek Khachatourian, A ; Abdollahi, F ; Abdollahi, S ; Sharif University of Technology
    Sociedad Espanola de Ceramica y Vidrio  2021
    Abstract
    In the bone tissue engineering field (BTE), it is of significant importance to develop bioactive multifunctional scaffolds with enhanced osteoconductivity, osteoinductivity, and antibacterial properties required for lost bone tissue regeneration. In this work, a bioactive glass-ceramic scaffold was manufactured via a novel polymer-derived ceramics (PDC) manufacturing method. To gain antibacterial properties, the silver ions were incorporated in controlled amount along with other precursors in the PDC processing stage. Microstructural and structural properties of the fabricated silicate-phosphate glass-ceramic scaffold were evaluated by scanning electron microscopy (SEM) equipped with energy... 

    The fabrication and characterization of bioactive Akermanite/Octacalcium phosphate glass-ceramic scaffolds produced via PDC method

    , Article Ceramics International ; Volume 47, Issue 5 , 2021 , Pages 6653-6662 ; 02728842 (ISSN) Abdollahi, S ; Paryab, A ; Khalilifard, R ; Anousheh, M ; Malek Khachatourian, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, a bioactive silicate-phosphate glass-ceramic scaffold was fabricated via the polymer-derived ceramics (PDC) method. K2HPO4 phosphate salt was used as the P2O5 precursor in this method. The effect of K2HPO4 wt% and heat treatment temperatures (900–1100 °C) was evaluated. It was observed that although increasing the wt% of K2HPO4 led to the formation of scaffolds with higher densities and strengths, it could also increase the formation of the calcium phase, which could result in improper release behavior of scaffolds. On the other hand, higher heat treatment temperatures enhanced the strength of the scaffolds but eliminated the bioactive octacalcium phosphate (OCP) phase.... 

    The fabrication and characterization of bioactive Akermanite/Octacalcium phosphate glass-ceramic scaffolds produced via PDC method

    , Article Ceramics International ; Volume 47, Issue 5 , 2021 , Pages 6653-6662 ; 02728842 (ISSN) Abdollahi, S ; Paryab, A ; Khalilifard, R ; Anousheh, M ; Malek Khachatourian, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, a bioactive silicate-phosphate glass-ceramic scaffold was fabricated via the polymer-derived ceramics (PDC) method. K2HPO4 phosphate salt was used as the P2O5 precursor in this method. The effect of K2HPO4 wt% and heat treatment temperatures (900–1100 °C) was evaluated. It was observed that although increasing the wt% of K2HPO4 led to the formation of scaffolds with higher densities and strengths, it could also increase the formation of the calcium phase, which could result in improper release behavior of scaffolds. On the other hand, higher heat treatment temperatures enhanced the strength of the scaffolds but eliminated the bioactive octacalcium phosphate (OCP) phase.... 

    The effect of Ag incorporation on the characteristics of the polymer derived bioactive silicate phosphate glass-ceramic scaffolds

    , Article Boletin de la Sociedad Espanola de Ceramica y Vidrio ; Volume 61, Issue 6 , 2022 , Pages 653-663 ; 03663175 (ISSN) Paryab, A ; Godary, T ; Khalilifard, R ; Malek Khachatourian, A ; Abdollahi, F ; Abdollahi, S ; Sharif University of Technology
    Sociedad Espanola de Ceramica y Vidrio  2022
    Abstract
    In the bone tissue engineering field (BTE), it is of significant importance to develop bioactive multifunctional scaffolds with enhanced osteoconductivity, osteoinductivity, and antibacterial properties required for lost bone tissue regeneration. In this work, a bioactive glass-ceramic scaffold was manufactured via a novel polymer-derived ceramics (PDC) manufacturing method. To gain antibacterial properties, the silver ions were incorporated in controlled amount along with other precursors in the PDC processing stage. Microstructural and structural properties of the fabricated silicate-phosphate glass-ceramic scaffold were evaluated by scanning electron microscopy (SEM) equipped with energy...