Loading...
Search for: single-event-transients
0.007 seconds

    Soft Error Rate Estimation in Presence of Multiple Event Transients (METs)

    , M.Sc. Thesis Sharif University of Technology Javanmardi, Mahdi (Author) ; Miremadi, Ghasem (Supervisor)
    Abstract
    With continuous device down-scaling and increase in transistor counts on a chip, complementary metal-oxide-semiconductor (CMOS) technology has become extremely sensitive to soft errors. Soft errors are transient errors caused by energetic particles such as neutrons and alpha particles. An essential step to design a soft error tolerant digital system with minimal performance and power overheads is Soft Error Rate (SER) estimation of system components. Until recently, Single Event Upsets (SEUs) in latches and Filp-Flops (FFs) and Single Event Transients (SETs) in combinational logic parts of digital circuits were regarded as the main effects of particle strikes. However, with the emerging... 

    Low cost soft error hardened latch designs for nano-scale CMOS technology in presence of process variation

    , Article Microelectronics Reliability ; Volume 53, Issue 6 , June , 2013 , Pages 912-924 ; 00262714 (ISSN) Rajaei, R ; Tabandeh, M ; Fazeli, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, two Low cost and Soft Error Hardened latches (referred to as LSEH1 and LSEH2) are proposed and evaluated. The proposed latches are fully SEU immune, i.e. they are capable of tolerating all particle strikes to any of their nodes. Moreover, they can mask Single Event Transients (SETs) occurring in combinational logics and reaching the input of the latches. We have compared our SEU/SET-tolerant latches with some well-known previously proposed soft error tolerant latches. To evaluate the proposed latches, we have done a set of SPICE simulations. The simulation results trough comparisons with other hardened latches reveal that the proposed latches not only have more robustness but... 

    Fault injection in mixed-signal environment using behavioral fault modeling in Verilog-A

    , Article Proceedings of the IEEE International Workshop on Behavioral Modeling and Simulation, BMAS, 23 September 2010 through 24 September 2010, San Jose, CA ; September , 2010 , Pages 69-74 ; 21603804 (ISSN) ; 9781424489954 (ISBN) Ahmadian, S. N ; Miremadi, S. G ; Sharif University of Technology
    2010
    Abstract
    Fault injection methods have been used for analyzing dependability characteristics of systems for years. In this paper we propose a practical mixed-signal fault injection flow that is fast as well as accurate. We described three classes of most common faults: i) Single event transients, ii) Electro-Magnetic interference and iii) Power disturbance faults. Fault models are implemented directly into circuit's devices using behavioral fault description in Verilog-A language. As an example for dependability evaluation, some test circuits have been prepared and the results of fault injection on their designs have been reported  

    A low-cost fault-tolerant technique for carry look-ahead adder

    , Article 2009 15th IEEE International On-Line Testing Symposium, IOLTS 2009, Sesimbra-Lisbon, 24 June 2009 through 26 June 2009 ; 2009 , Pages 217-222 ; 9781424445950 (ISBN) Namazi, A. R ; Sedaghat, Y ; Miremadi, G ; Ejlali, A. R ; Sharif University of Technology
    2009
    Abstract
    This paper proposes a low-cost fault-tolerant Carry Look-Ahead (CLA) adder which consumes much less power and area overheads in comparison with other fault-tolerant CLA adders. Analytical and experimental results show that this adder corrects all single-bit and multiple-bit transient faults. The Power-Delay Product (PDP) and area overheads of this technique are decreased at least 82% and 71%, respectively, as compared to adders which use traditional TMR, parity prediction, and duplication techniques. © 2009 IEEE  

    Evaluation of fault-tolerant designs implemented on SRAM-based FPGAs

    , Article Proceedings - 10th IEEE Pacific Rim International Symposium on Dependable Computing, Papeete Tahiti, 3 March 2004 through 5 March 2004 ; 2004 , Pages 327-332 ; 0769520766 (ISBN); 9780769520766 (ISBN) Asadi, G ; Miremadi, S. G ; Zarandi, H. R ; Ejlali, A ; Sharif University of Technology
    2004
    Abstract
    The technology of SRAM-based devices is sensible to Single Event Upsets (SEUs) that may be induced mainly by high energy heavy ions and neutrons. This paper presents a framework for the evaluation of fault-tolerant designs implemented on SRAM-based FPGAs using emulated SEUs. The SEU injection process is performed by inserting emulated SEUs in the device using its configuration bitstream file. An Altera FPGA, i.e. the Flex10K200, and the ITC'99 benchmark circuits are used to experimentally evaluate the method. The results show that between 32 to 45 percent of SEUs injected to the device propagate to the output terminals of the device  

    Soft error rate estimation for combinational logic in presence of single event multiple transients

    , Article Journal of Circuits, Systems and Computers ; Vol. 23, issue. 6 , 2014 Rajaei, R ; Tabandeh, M ; Fazeli, M ; Sharif University of Technology
    Abstract
    Fast and accurate estimation of soft error rate in VLSI circuits is an essential step in a soft error tolerant ASIC design. In order to have a cost effective protection against radiation effects in combinational logics, an accurate and fast method for identification of most susceptive gates and paths is needed. In this paper, an efficient, fast and accurate method for soft error propagation probability (SEPP) estimation is presented and its performance is evaluated. This method takes into account all three masking factors in multi cycles. It also considers multiple event transients as a new challenge in soft error tolerant VLSI circuit design. Compared with Monte Carlo (MC) simulation-based... 

    Design of Robust Digital Circuits Against Soft Errors Considering Multiple Event Transients Fault (METs)

    , M.Sc. Thesis Sharif University of Technology Rezaei, Siavash (Author) ; Miremadi, Ghasem (Supervisor)
    Abstract
    Nowadays, one of the most important challenges in the design of digital circuits is their susceptibility to the strike of high energy particles which leads to the Single Event Transient (SET) and Multiple Event Transients (MET). In fact, technology scaling which results in lower supply voltage, higher operating frequency, and lower nodal capacitance, makes today’s digital circuits more susceptible not only to high energy particles but also to low energy particles. Moreover emerging deep sub-micron technologies and the integration of more cells in today’s chips have caused higher probability of MET occurrences. A lot of research has tried to reduce the soft error rate due to high energy... 

    A layout-based approach for multiple event transient analysis

    , Article Proceedings - Design Automation Conference ; 2013 ; 0738100X (ISSN) ; 9781450320719 (ISBN) Ebrahimi, M ; Asadi, H ; Tahoori, M. B ; Sharif University of Technology
    2013
    Abstract
    With the emerging nanoscale CMOS technology, Multiple Event Transients (METs) originated from radiation strikes are expected to become more frequent than Single Event Transients (SETs). In this paper, a fast and accurate layout- based Soft Error Rate (SER) estimation technique with consideration of both SET and MET fault models is pro- posed. Unlike previous techniques in which the adjacent MET sites are obtained from logic-level netlist, we perform a comprehensive layout analysis to extract MET adjacent cells. It is shown that layout-based technique is the only effective solution for identification of adjacent cells as netlist-based techniques significantly underestimate the overall SER.... 

    Layout-Based modeling and mitigation of multiple event transients

    , Article IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ; Volume 35, Issue 3 , 2016 , Pages 367-379 ; 02780070 (ISSN) Ebrahimi, M ; Asadi, H ; Bishnoi, R ; Baradaran Tahoori, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Radiation-induced multiple event transients (METs) are expected to become more frequent than single event transients (SETs) at nanoscale CMOS technology nodes. In this paper, a fast and accurate layout-based soft error rate (SER) assessment technique with consideration of both SET and MET fault models is presented. Despite existing techniques in which the adjacent MET sites are extracted from a logic-level netlist, we conduct a comprehensive layout analysis to obtain MET adjacent cells. Experimental results reveal that the layout-based technique is the only viable solution for identification of the adjacent cells as netlist-based techniques considerably underestimate the overall SER.... 

    A power efficient masking technique for design of robust embedded systems against SEUs and SETs

    , Article 23rd IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, DFT 2008, Boston, MA, 1 October 2008 through 3 October 2008 ; October , 2008 , Pages 193-201 ; 15505774 (ISSN) Fazeli, M ; Miremadi, S. G ; Sharif University of Technology
    2008
    Abstract
    In this paper, an SET and SEU tolerant latch suitable for use in embedded systems called SETUR (Single Event Transient and Upset Robust latch) is presented and evaluated. The SETUR is based on the use of a redundant feedback line and a CMOS delay element to tolerate the effect of the SETs occurring in the input line of the latch as well as SEUs occurring inside the latch. The experimental results show that the probability of an SET resulting in a soft error can be reduced up to 90% by choosing a proper delay value. The soft error rate of the SETUR due to SEUs occurring inside the latch is reduced by 95% while having lower area, power and performance overhead than the previously proposed... 

    Circuit Level Techniques for Soft Error Mitigation in Combinational and Sequential Parts in Nano-scale CMOS Technology

    , Ph.D. Dissertation Sharif University of Technology Rajaei, Ramin (Author) ; Tabandeh, Mahmoud (Supervisor) ; Fazeli, Mahdi (Co-Advisor)
    Abstract
    CMOS technology has reached two digit nanometer dimensions. This scaling trend improves performance and power consumption on the one hand, and reduces noise margin and circuits reliability on the other. Along with downscaling, sensitivity to radiation induced soft errors is increasing. As CMOS dimensions are shrinking, node capacitance of circuits become smaller. Consequently, particles with smaller charge could induce parasitic voltages in some nodes and result in soft errors. There are more particles with smaller charge than the ones with larger. Therefore, soft error rate is rapidly increasing with technology advances. Single Event Multiple Effects (SEMEs) is a new challenge emerged in... 

    Soft error estimation and mitigation of digital circuits by characterizing input patterns of logic gates

    , Article Microelectronics Reliability ; Vol. 54, issue. 6-7 , 2014 , p. 1412-1420 Rezaei, S ; Miremadi, S. G ; Asadi, H ; Fazeli, M ; Sharif University of Technology
    Abstract
    Soft errors caused by particles strike in combinational parts of digital circuits are a major concern in the design of reliable circuits. Several techniques have been presented to protect combinational logic and reduce the overall circuit Soft Error Rate (SER). Such techniques, however, typically come at the cost of significant area and performance overheads. This paper presents a low area and zero-delay overhead method to protect digital circuits' combinational parts against particles strike. This method is made up of a combination of two sub-methods: (1) a SER estimation method based on signal probability, called Estimation by Characterizing Input Patterns (ECIP) and (2) a protection... 

    Efficient algorithms to accurately compute derating factors of digital circuits

    , Article Microelectronics Reliability ; Volume 52, Issue 6 , June , 2012 , Pages 1215-1226 ; 00262714 (ISSN) Asadi, H ; Tahoori, M. B ; Fazeli, M ; Miremadi, S. G ; Sharif University of Technology
    2012
    Abstract
    Fast, accurate, and detailed Soft Error Rate (SER) estimation of digital circuits is essential for cost-efficient reliable design. A major step to accurately estimate a circuit SER is the computation of failure probability, which requires the computation of three derating factors, namely logical, electrical, and timing derating. The unified treatment of these derating factors is crucial to obtain accurate failure probability. Existing SER estimation techniques are either unscalable to large circuits or inaccurate due to lack of unified treatment of all derating factors. In this paper, we present fast and efficient algorithms to estimate SERs of circuit components in the presence of single... 

    Single Event Multiple Upset (SEMU) tolerant latch designs in presence of process and temperature variations

    , Article Journal of Circuits, Systems and Computers ; Volume 24, Issue 1 , January , 2015 ; 02181266 (ISSN) Rajaei, R ; Tabandeh, M ; Fazeli, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2015
    Abstract
    In this paper, we propose two novel soft error tolerant latch circuits namely HRPU and HRUT. The proposed latches are both capable of fully tolerating single event upsets (SEUs). Also, they have the ability of enduring single event multiple upsets (SEMUs). Our simulation results show that, both of our HRPU and HRUT latches have higher robustness against SEMUs as compared with other recently proposed radiation hardened latches. We have also explored the effects of process and temperature variations on different design parameters such as delay and power consumption of our proposed latches and other leading SEU tolerant latches. Our simulation results also show that, compared with the reference... 

    An energy efficient circuit level technique to protect register file from MBUs and SETs in embedded processors

    , Article Proceedings of the International Conference on Dependable Systems and Networks, 29 June 2009 through 2 July 2009, Lisbon ; 2009 , Pages 195-204 ; 9781424444212 (ISBN) Fazeli, M ; Namazi, A ; Miremadi, S.G ; Sharif University of Technology
    2009
    Abstract
    This paper presents a circuit level soft error-tolerant-technique, called RRC (Robust Register Caching), for the register file of embedded processors. The basic idea behind the RRC is to effectively cache the most vulnerable registers in a small highly robust register cache built by circuit level SEU and SET protected memory cells. To decide which cache entry should be replaced, the average number of read operations during a register ACE time is used as a criterion to judge. In fact, the victim cache entry is one which has the maximum read count. To minimize the power overhead of the RRC, the clock gating technique is efficiently exploited for the main register file resulting in... 

    A novel SET/SEU hardened parallel I/O port

    , Article 2009 IEEE Circuits and Systems International Conference on Testing and Diagnosis, ICTD'09, Chengdu, 28 April 2009 through 29 April 2009 ; 2009 ; 9781424425877 (ISBN) Razmkhah, M. H ; Miremadi, S. G ; Ejlali, A ; Fazeli, M ; Sharif University of Technology
    2009
    Abstract
    The continuous decrease in CMOS technology feature size increases the susceptibility of such circuits to single event transient SET and single event upset SEU, caused by energetic particles striking system wires and flip flops. This paper presents a novel SET/SEU-detection technique for I/O ports where different sampling times used to detect the effects of SET/SEUs. The power dissipation, area, reliability, and propagation delay of the SET/SEU-detection I/O port are analyzed by HSPICE v.X-2005.v9 simulation. The results show that this I/O port can detect all SET/SEUs, by consumption of about 113% more power and occupation of 145% more area than simple I/O port. ©2009 IEEE  

    Low energy single event upset/single event transient-tolerant latch for deep subMicron technologies

    , Article IET Computers and Digital Techniques ; Volume 3, Issue 3 , 2009 , Pages 289-303 ; 17518601 (ISSN) Fazeli, M ; Miremadi, S. G ; Ejlali, A ; Patooghy, A ; Sharif University of Technology
    2009
    Abstract
    Single event upsets (SEUs) and single event transients (SETs) are major reliability concerns in deep submicron technologies. As technology feature size shrinks, digital circuits are becoming more susceptible to SEUs and SETs. A novel SEU/SET-tolerant latch called feedback redundant SEU/SET-tolerant latch (FERST) is presented, where redundant feedback lines are used to mask SEUs and delay elements are used to filter SETs. Detailed SPICE simulations have been done to evaluate the proposed design and compare it with previous latch designs. The results show that the SEU tolerance of the FERST latch is almost equal to that of a TMR latch (a widely used latch which is the most reliable among the...