Loading...
Search for: sio--2
0.007 seconds

    Synthesis and characterization of molybdenum complex supported on magnetic and non-magnetic supports: comparing their catalytic activity, selectivity, and reusability

    , Article Journal of the Iranian Chemical Society ; Volume 16, Issue 4 , 2019 , Pages 673-685 ; 1735207X (ISSN) Bagherzadeh, M ; Balali, M ; Haghdoost, M. M ; Keypour, H ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    A molybdenum complex was immobilized on Schiff-base-modified magnetic and non-magnetic particles by covalent linkage. The characterizations of the obtained materials were carried out by means of TG–DTG, SEM, TEM, VSM, XPS, IR, and Raman microprobe techniques. All of them exhibited efficient activities in the oxidation of sulfides to sulfoxides by urea hydrogen peroxide oxidant. The advantages and disadvantages of these catalysts are discussed in detail. Molybdenum complex immobilized on silica bead can be recycled and recovered by simple filtration, but it demonstrated low activity in catalytic oxidation reaction. Immobilization on nano-SiO 2 leads to the formation of nanocatalyst having... 

    Simple and practical protocol for the silylation of phenol derivatives using reusable NaHSO4 dispread on silica gel under neutral conditions

    , Article Phosphorus, Sulfur and Silicon and the Related Elements ; Volume 182, Issue 1 , 2007 , Pages 175-179 ; 10426507 (ISSN) Khalili, M. S ; Ghafuri, H ; Mojahedi Jahromi, S ; Hashemi, M. M ; Sharif University of Technology
    2007
    Abstract
    A simple and mild procedure for the trimethylsilylation of a wide variety of phenols with hexamethyldisilazane (HMDS) on the surface of silica gel dispersed with NaHSO4 at r.t. in a few minutes with excellent yields under neutral conditions is reported. This procedure also allows an excellent selectivity for the silylation of phenols in the presence of amine and CO 2H groups  

    ZrN fractal-graphene-based metamaterial absorber in the visible and near-IR regimes

    , Article Optik ; Volume 237 , 2021 ; 00304026 (ISSN) Baqir, M. A ; Choudhury, P. K ; Niaz Akhtar, M ; Sharif University of Technology
    Elsevier GmbH  2021
    Abstract
    The absorption characteristics of zirconium nitride (ZrN)-based metamaterial absorber of fractal geometry are studied. The proposed absorber is comprised of fractal metasurface at the top having subwavelength-sized periodic pattern of specially designed ZrN circular nano-discs arranged over silicon dioxide (SiO2) substrate. A tri-layer graphene, owing to its exhibiting better tunability, is introduced at the interface of metasurface and substrate. The bottom side of SiO2 is coated with silver nanolayer to block transmission. The absorptivity essentially depends on the kind of fractal design used in metasurface to configure the absorber. The obtained results exhibit the absorption... 

    Reduction of cement consumption by the aid of silica nano-particles (investigation on concrete properties)

    , Article Journal of Civil Engineering and Management ; Volume 18, Issue 3 , 2012 , Pages 416-425 ; 13923730 (ISSN) Bahadori, H ; Hosseini, P ; Sharif University of Technology
    2012
    Abstract
    In this study, effects of replacing cement with colloidal amorphous silica nano-particles have been experimentally investigated on the physical and mechanical properties, durability and microstructure of concrete. Experimental results include workability, fresh concrete density, and hardened concrete properties like compressive strength at different ages of 3, 7, and 28-days, and also 28-days splitting tensile strength. Furthermore, influence of silica nano-particles on durability and microstructure of concrete for 28-days specimens was tested by conducting water absorption test, Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX), respectively. In order to study... 

    Fabrication and microwave dielectric characterization of cordierite/BZBS (Bi2O3-ZnO-B2O3-SiO2) glass composites for LTCC applications

    , Article Journal of Alloys and Compounds ; Volume 882 , 2021 ; 09258388 (ISSN) Ebrahimi, F ; Nemati, A ; Banijamali, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The present work aims to fabricate cordierite/BZBS glass (Bi2O3-ZnO-B2O3-SiO2) composites through one-step heat treatment. Cordierite was synthesized from a solid-state reaction of aluminum hydroxide, magnesium hydroxide, and silica gel. BZBS glass was obtained through the classic melt quenching technique. Milled cordierite powder was mixed with different volume fractions of glass powders and heat treated at 950 °C. Considering the densification behavior along with the microwave dielectric features, two composites (C70G30 and C60G40) were chosen for further examination. These composites were separately heat treated at different temperatures from 650 up to 900 °C, then characterized due to... 

    Tire tread performance of silica-filled SBR/BR rubber composites incorporated with nanodiamond and nanodiamond/nano-SiO2 hybrid nanoparticle

    , Article Diamond and Related Materials ; Volume 126 , 2022 ; 09259635 (ISSN) Salkhi Khasraghi, S ; Momenilandi, M ; Shojaei, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In the present research, the influence of nanodiamond (ND) and a physical hybrid of ND and fumed nano-SiO2 were investigated on the performance of a typical tire tread compound. The styrene-butadiene rubber (SBR) and cis-butadiene rubber (BR) blend filled with a commercial grade highly dispersive silica at 70 phr loading were used as typical tire tread compound. ND was substituted partially with silica at two different concentrations of 5 and 10phr. Meanwhile, 5 phr of ND/nano-SiO2 hybrids with the weight ratio of 2.5/2.5 and 1/4 were substituted with silica. ND-Filled compounds exhibit increased scorch and cure time compared to controls. Improvement in different characteristics of the... 

    Enhanced electromagnetic wave dissipation features of magnetic Ni microspheres by developing core-double shells structure

    , Article Ceramics International ; Volume 48, Issue 1 , 2022 , Pages 446-454 ; 02728842 (ISSN) Zhang, B ; Mahariq, I ; Tran, N ; Mahmoud, M. Z ; Akhtar, M. N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Readily oxidization of magnetic particles is a common drawback of these type of materials which reduce their electromagnetic wave dissipation performance. In this study, the magnetic core-double shells structured (Ni/SiO2/Polyaniline) composite has been developed for protection of the core from oxidation and in consequent improvement the complex permittivity. Solvothermal and in-situ polymerization methods were utilized for decorating Ni micro-particles with SiO2 and conductive polyaniline polymer respectively. All physico-chemical, magnetic and electromagnetic features were evaluated via XRD, FTIR, XPS, FESEM, VSM and VNA analysis. The double shells composite possesses significant... 

    SiO 2 -covered graphene oxide nanohybrids for in situ preparation of UHMWPE/GO(SiO 2 ) nanocomposites with superior mechanical and tribological properties

    , Article Journal of Applied Polymer Science ; Volume 136, Issue 31 , 2019 ; 00218995 (ISSN) Haddadi, S. A ; Saadatabadi, A. R ; Kheradmand, A ; Amini, M ; Ramezanzadeh, M ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    The modified Hummer technique was used in the preparation of graphene oxide (GO) nanosheets, and then SiO 2 decorated GO [GO(SiO 2 )] nanosheets were synthesized via the sol–gel method. Then, ultrahigh-molecular-weight polyethylene (UHMWPE) nanocomposites loaded with 0.5, 1, 1.5, and 2 wt % of GO(SiO 2 ) were prepared using magnesium ethoxide/GO(SiO 2 )-supported Ziegler–Natta catalysts via the in situ polymerization. Morphological study of the prepared polymer powders was assessed using field-emission scanning electron microscopy, which showed that GO(SiO 2 ) nanohybrids have been uniformly dispersed and distributed into the UHMWPE matrix. Also, the neat UHMWPE and its nanocomposites were... 

    Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids

    , Article Energy ; Volume 227 , 2021 ; 03605442 (ISSN) Akram, N ; Montazer, E ; Kazi, S. N ; Soudagar, M. E. M ; Ahmed, W ; Zubir, M. N. M ; Afzal, A ; Muhammad, M. R ; Ali, H. M ; Márquez, F. P. G ; Sarsam, W. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Covalently functionalized carbon nanoplatelets and non-covalent functionalized metal oxides nanoparticles (surfactant-treated) have been used to synthesize water-based nanofluids in this paper. To prove nanofluid stability, ultraviolet–visible (UV–vis) spectroscopy is used, and the results show that nanofluid is stable for sixty days for carbon and thirty days for metal oxides. The thermophysical properties are evaluated experimentally and validated with theoretical models. Thermal conductivities of f-GNPs, SiO2, and ZnO nanofluids are enhanced by 25.68%, 11.49%, and 15.42%, respectively. Lu-Li and Bruggeman's thermal conductivity models are correctly matched with the experimental data.... 

    Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids

    , Article Energy ; Volume 227 , 2021 ; 03605442 (ISSN) Akram, N ; Montazer, E ; Kazi, S. N ; Soudagar, M. E. M ; Ahmed, W ; Zubir, M. N. M ; Afzal, A ; Muhammad, M. R ; Ali, H. M ; Márquez, F. P. G ; Sarsam, W. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Covalently functionalized carbon nanoplatelets and non-covalent functionalized metal oxides nanoparticles (surfactant-treated) have been used to synthesize water-based nanofluids in this paper. To prove nanofluid stability, ultraviolet–visible (UV–vis) spectroscopy is used, and the results show that nanofluid is stable for sixty days for carbon and thirty days for metal oxides. The thermophysical properties are evaluated experimentally and validated with theoretical models. Thermal conductivities of f-GNPs, SiO2, and ZnO nanofluids are enhanced by 25.68%, 11.49%, and 15.42%, respectively. Lu-Li and Bruggeman's thermal conductivity models are correctly matched with the experimental data....