Loading...
Search for: sliding-distances
0.009 seconds

    Surface severe plastically deformed nanostructured aa7075 alloy: assessment on tribological and axial fatigue behaviors

    , Article Journal of Materials Engineering and Performance ; Volume 29, Issue 6 , 2020 , Pages 3774-3783 Efe, Y ; Karademir, I ; Husem, F ; Maleki, E ; Unal, O ; Sharif University of Technology
    Springer  2020
    Abstract
    AA7075 alloy is exposed to severe shot peening (SSP) with an Almen intensity of 20A. The microstructure is analyzed via FEGSEM and EBSD microscopy. X-ray diffraction (XRD) analysis is used to evaluate the crystallite size in terms of FWHM measurements. The residual stress measurements show a thicker compressed layer (600 µm) formed by SSP. Microhardness improvements are observed as 30% on topmost surface and releases substantially after 600 µm. Coefficient of friction (COF) of treated material remains higher throughout the sliding distance, however, is reduced particularly in the early stage of sliding distance for the wear load of 20 N. The effect of SSP is vanished particularly at lower... 

    Wear behaviour of in situ Cu-Al2O3 composites produced by internal oxidation of as cast alloys

    , Article Tribology - Materials, Surfaces and Interfaces ; Volume 3, Issue 3 , 2009 , Pages 125-131 ; 17515831 (ISSN) Soleimanpour, A. M ; Abachi, P ; Purazrang, K ; Sharif University of Technology
    2009
    Abstract
    In the present study, the wear behaviour of Cu-Al2O3 composites and Cu-Al alloys has been investigated. The experiment involved casting of Cu-Al alloys with 0•37, 1, 2 and 3 wt-% of aluminium under inert gas atmosphere. The composites were produced by internal oxidation of alloys at 950°C for 10 h in presence of Fe2O3 and Al 2O3 powders mixture. The microstructures of composites were studied using SEM and atomic force microscopy. To identify wear behaviour of specimens, dry sliding pin-on-disk wear tests were conducted according to ASTM G99-95a standard. The normal loads of 20, 30, and 40 N were applied on specimens during wear tests. The sliding speed and distances were selected as 0•5 m... 

    Effect of casting process on microstructure and tribological behavior of LM13 alloy

    , Article Journal of Alloys and Compounds ; Volume 475, Issue 1-2 , 2009 , Pages 321-327 ; 09258388 (ISSN) Ashiri, R ; Niroumand, B ; Karimzadeh, F ; Hamani, M ; Pouranvari, M ; Sharif University of Technology
    2009
    Abstract
    LM13 alloy is widely used in piston industry, due to its low coefficient of thermal expansion, excellent castability and hot tear resistance. In this research effect of casting process on wear behavior of LM13 alloy was investigated. First, samples were produced using two casting processes and heat treated. Then wear behavior of these samples under dry sliding condition was examined. Results of hardness and strength tests indicated that squeeze cast specimens exhibited higher mechanical properties. Wear experiment results showed that in both squeeze and gravity cast specimens, amount of weight loss increases with increase in sliding distance which is accompanied by reduction in wear rate and... 

    Investigation of friction and wear behaviors of 2024 Al and 2024 Al/SiCp composite at elevated temperatures

    , Article Journal of Alloys and Compounds ; Volume 501, Issue 2 , Jan , 2010 , Pages 326-332 ; 09258388 (ISSN) Mousavi Abarghouie, S. M. R ; Seyed Reihani, S. M ; Sharif University of Technology
    2010
    Abstract
    Friction and wear behaviors of artificially aged 2024 Al and 2024 Al/20 vol.% SiC composite prepared by powder metallurgy method were investigated in the temperature range 20250 °C. Dry sliding wear tests were conducted at a constant sliding velocity of 0.5 m/s, an applied load of 20 N, and a sliding distance of 2500m using a pin-on-disc apparatus. Worn surfaces and wear debris were also examined by using SEM and EDS techniques. All specimens showed a transition from mild-to-severe wear above a critical temperature. In the mild wear regime, the wear rate and the friction coefficient of the composite specimen were higher than those of the unreinforced alloy. The SiC particles led to an... 

    The physical and mechanical properties of Cu/Al2O3 composite synthesized by internal oxidation

    , Article Materials Science and Technology Conference and Exhibition 2009, MS and T'09, 25 October 2009 through 29 October 2009, Pittsburgh, PA ; Volume 3 , 2009 , Pages 1806-1815 ; 9781615676361 (ISBN) Soleimanpour, A. M ; Abachi, P ; Alimardani, N ; Motamen, A ; Sharif University of Technology
    Abstract
    The internal Oxidation introduces a practical method for producing copper matrix composites reinforced by alumina particles. The mechanical and physical properties of alumina reinforced copper composites and alloy specimens were investigated. This experiment involves casting of Cu-Al alloys with 0.37, 1, 2 and 3 weight percent of aluminium in non-oxidizing atmosphere with pure oxygen free copper. The composite specimens produced after internal oxidation process at 950°C for 10 hours in sealed alumina crucible. The microstructures of composite specimens were studied after internal oxidation using SEM and AFM. The hardness and electrical resistivity tests were measured. The wear properties of...