Loading...
Search for: slip-velocity
0.005 seconds

    Slip velocity in pulsed disc and doughnut extraction columns

    , Article Chemical Industry and Chemical Engineering Quarterly ; Volume 17, Issue 3 , 2011 , Pages 333-339 ; 14519372 (ISSN) Torab Mostaedi, M ; Jalilvand, H ; Outokesh, M ; Sharif University of Technology
    2011
    Abstract
    In the present work, slip velocity has been measured in a 76 mm diameter pulsed disc and doughnut extraction column for four different liquid-liquid systems. The effects of operating variables including pulsation intensity and dispersed and continuous phase flow rates on slip velocity have been investigated. The existence of three different operational regimes, namely mixersettler, transition, and emulsion regimes, was observed when the energy input was changed. Empirical correlations are derived for prediction of the slip velocity in terms of operating variables, physical properties of the liquid systems, and column geometry for different regimes. Good agreement between prediction and... 

    Solution of thermally developing zone in short micro-/nanoscale channels

    , Article Journal of Heat Transfer ; Volume 131, Issue 4 , 2009 , Pages 44501-1- 44501-5 ; 00221481 (ISSN) Darbandi, M ; Vakilipour, S ; Sharif University of Technology
    2009
    Abstract
    We numerically solve the Navier-Stokes equations to study the rarefied gas flow in short micro- and nanoscale channels. The inlet boundary conditions play a critical role in the structure of flow in short channels. Contrary to the classical inlet boundary conditions, which apply uniform velocity and temperature profiles right at the real channel inlet, we apply the same inlet boundary conditions, but at a fictitious position far upstream of the real channel inlet. A constant wall temperature incorporated with suitable temperature jump is applied at the channel walls. Our solutions for both the classical and extended inlet boundary conditions are compared with the results of other available... 

    Study of Dispersed Phase Holdup and Slip Velocity in a Pulsed Disc and Doughnut Extraction Column

    , M.Sc. Thesis Sharif University of Technology Jalilvand, Hossein (Author) ; Outukesh, Mohammad (Supervisor) ; Torab Mostaedi, Meisam (Supervisor)
    Abstract
    Dispersed phase holdup has been measured in a 75 mm diameter pulsed disc and doughnut extraction column for three different liquid-liquid systems. The effects of operational variables such as pulsation intensity and dispersed and continuous phases flow rates on holdup have been investigated and found to be significant. The existence of three different operational regimes, namely mixer-settler, dispersion, and emulsion regimes, was observed when the energy input was changed. The results indicated that the characteristic velocity approach is applicable to this type of extraction column for analysis holdup in transition and emulsion regions. Empirical correlations are derived for prediction of... 

    Physically based wall boundary condition for dissipative particle dynamics

    , Article Microfluidics and Nanofluidics ; Vol. 17, issue. 1 , July , 2014 , p. 181-198 Mehboudi, A ; Saidi, M. S ; Sharif University of Technology
    Abstract
    In this paper, we present a novel wall boundary condition model, which stands just on the physical facts, for the dissipative particle dynamics (DPD) method. After the validation of this model by means of the common benchmarks such as the Couette and the Poiseuille flows, we study the effects of this model on the diffusion coefficient in a wide variety of different coarse-graining levels. The obtained results show that the proposed model preserves the thermodynamics of the system, also eliminates the spurious effects of the wall, and consequently is able to preserve the accurate structural characteristics of the working DPD fluid in the wall's vicinity. We also study the fluid flow through a... 

    Experimental Analysis of Effective Parameters in Hole Cleaning of Directional Wells While Drilling

    , M.Sc. Thesis Sharif University of Technology Sarafraz, Siyamak (Author) ; Jamshidi, Saeed (Supervisor) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    One of the major problems in directional and extended reach wells is poor hole cleaning. Directional and horizontal drilling is more complex than vertical wells. Ineffective particles transport leads to several undesirable issues during drilling. This thesis analyzed all parameters which have directly affected directional hole cleaning. The thesis is based on an experimental set-up designed in Sharif University. In the experimental work, two types of drilling fluid, Newtonian and Non-Newtonian with numerous rheological parameters, three different flow rate, three various nozzle sizes and three individual RPMs in three distinct inclinations 30°, 60° and 90° were used to simulate. Also, to... 

    Dispersed phase holdup in a pulsed disc and doughnut extraction column

    , Article Brazilian Journal of Chemical Engineering ; Volume 28, Issue 2 , June , 2011 , Pages 313-323 ; 01046632 (ISSN) Torab Mostaedi, M ; Jalilvand, H ; Outokesh, M ; Sharif University of Technology
    2011
    Abstract
    Dispersed phase holdup has been measured in a 76 mm diameter pulsed disc and doughnut extraction column for three different liquid-liquid systems. The effects of operational variables such as pulsation intensity and dispersed and continuous phase flow rates on holdup have been investigated and found to be significant. The existence of three different operational regimes, namely mixer-settler, dispersion, and emulsion regimes, was observed when the energy input was changed. The results indicated that the characteristic velocity approach is applicable to this type of extraction column for analysis of holdup in the transition and emulsion regions. Empirical correlations are derived for... 

    Solution of thermally developing zone in short micro-/nanoscale channels

    , Article Journal of Heat Transfer ; Volume 131, Issue 4 , 2009 , Pages 1-15 ; 00221481 (ISSN) Darbandi, M ; Vakilipour, S ; Sharif University of Technology
    2009
    Abstract
    We numerically solve the Navier-Stokes equations to study the rarefied gas flow in short micro-and nanoscale channels. The inlet boundary conditions play a critical role in the structure of flow in short channels. Contrary to the classical inlet boundary conditions, which apply uniform velocity and temperature profiles right at the real channel inlet, we apply the same inlet boundary conditions, but at a fictitious position far upstream of the real channel inlet. A constant wall temperature incorporated with suitable temperature jump is applied at the channel walls. Our solutions for both the classical and extended inlet boundary conditions are compared with the results of other available... 

    Effects of slip condition on the characteristic of flow in ice melting process

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 18, Issue 3 , 2005 , Pages 253-261 ; 1728-144X (ISSN) Raoufpanah, A ; Rad, M ; Borujerdi, A. N ; Sharif University of Technology
    Materials and Energy Research Center  2005
    Abstract
    In this paper a laminar flow of water on an ice layer subjected to a slip condition is considered numerically. The paper describes a parametric mathematical model to simulate the coupled heat and mass transfer events occurring in moving boundary problems associated with a quasi steady state steady flow process. The discretization technique of the elliptic governing differential equations of mass, momentum and energy is based on the control volume finite difference approach and enthalpy method, the results illustrate, the distribution of heat transfer coefficient, ice melting thickness, slip velocity at solid moving boundary and boundary layer thickness for some values of slip velocity... 

    Observational comparative study in Kühni and ORC agitated columns for the mechanism and performance of molybdenum extraction under various hydrodynamic conditions

    , Article International Journal of Heat and Mass Transfer ; Volume 185 , 2022 ; 00179310 (ISSN) Shakib, B ; Torkaman, R ; Torab-Mostaedi, M ; Asadollahzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The present work is expressed to interpret the hydrodynamic parameters of rotation extraction columns in the reactive and non-reactive systems. The solvent extraction technique has been utilized for optimizing the transportation of molybdenum ions to the organic phase in two agitated columns (ORC and Kühni columns). Dispersed phase volume fraction, average droplet diameter, slip velocity, size distribution, and ions permeability of the aqueous phase have been investigated in terms of changing the operational variables including the agitation rate, flow rate of the inlet dispersed and continuous phases, column geometry, and reaction conditions. By considering the reactive and non-reactive... 

    Thermodynamic analysis of slip flow forced convection through a microannulus

    , Article Journal of Thermophysics and Heat Transfer ; Volume 24, Issue 4 , Oce-Dec , 2010 , Pages 785-795 ; 08878722 (ISSN) Sadeghi, A ; Asgarshamsi, A ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    The present investigation is devoted to the second law of thermodynamics analysis of steady-state hydrodynamically and thermally fully developed laminar gasflow in a microannulus with constant but different wall heat fluxes. Slip velocity and temperature jump boundary conditions are usedtodescribe rarefaction effects. Viscous heating is also included for both the wall cooling and heating cases. Using already available velocity profile, closedform expressions are obtained for the transverse distribution of temperature and entropy generation rates. The results demonstrate that the effectof the wall heatfluxes ratioonentropy generation is negligible atlarge valuesofthe group parameter and... 

    Viscous dissipation and rarefaction effects on laminar forced convection in microchannels

    , Article Journal of Heat Transfer ; Volume 132, Issue 7 , 2010 , Pages 1-12 ; 00221481 (ISSN) Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    Fluid flow in microchannels has some characteristics, which one of them is rarefaction effect related with gas flow. In the present work, hydrodynamically and thermally fully developed laminar forced convection heat transfer of a rarefied gas flow in two microgeometries is studied, namely, microannulus and parallel plate microchannel. The rarefaction effects are taken into consideration using first-order slip velocity and temperature jump boundary conditions. Viscous heating is also included for either the wall heating or the wall cooling case. Closed form expressions are obtained for dimensionless temperature distribution and Nusselt number. The results demonstrate that for both geometries,... 

    Natural convection of Al2O3-water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon

    , Article International Journal of Thermal Sciences ; Volume 105 , 2016 , Pages 137-158 ; 12900729 (ISSN) Esfandiary, M ; Mehmandoust, B ; Karimipour, A ; Pakravan, H. A ; Sharif University of Technology
    Elsevier Masson SAS 
    Abstract
    Effects of inclination angle on natural convective heat transfer and fluid flow in an enclosure filled with Al2O3-water nanofluid are studied numerically. The left and right walls of enclosure are kept in hot and cold constant temperature while the other two walls are assumed to be adiabatic. Considering Brownian motion and thermophoresis effect (two important slip velocity mechanisms) the two-phase mixture model has been employed to investigate the flow and thermal behaviors of the nanofluid. The study was performed for various inclination angles of enclosure ranging from γ = 0° to γ = 60°, volume fraction from 0% to 3%, and Rayleigh numbers varying from 105 to 107. The governing equations... 

    Flow past confined nano cylinder in microscale channels

    , Article Proceedings of the 7th International Conference on Nanochannels, Microchannels, and Minichannels 2009, ICNMM2009, 22 June 2009 through 24 June 2009, Pohang ; Issue PART A , 2009 , Pages 433-440 ; 9780791843499 (ISBN) Darbandi, M ; Setayeshgar, A ; Sharif University of Technology
    Abstract
    Simulations of flow through microchannels over nano particles are widely encountered in solid particle transportation. In these simulations, the rarefaction phenomenon will affect the microflow behavior and subsequently the aerodynamics coefficients such as the drag coefficient derived for the suspended particles in the flow stream. This is why we use the Lattice Boltzmann method LBM to study the flow past a confined cylinder placed in a microchannel. The LBM is a mesoscopic method capable of solving flow in macro and micro scales. Applying the Maxwellian scattering kernel, the slip velocity is modeled on the channel and cylinder walls appropriately. To validate our formulations, we firstly... 

    Exact hydrodynamic description of pilot plant Oldshue-Rushton contactor: a case study with the introduction of selenium and tellurium into reaction system

    , Article International Journal of Environmental Analytical Chemistry ; Volume 102, Issue 16 , 2022 , Pages 4191-4207 ; 03067319 (ISSN) Shakib, B ; Torkaman, R ; Torab Mostaedi, M ; Asadollahzadeh, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, the hydrodynamic behaviour of the chemical reaction system (selenium, tellurium, and TBP) was interpreted in the Oldshue-Rushton extraction column. The optimum operating parameters for extracting the selenium and tellurium from chloride medium were carried out by using the batch experiments. The feed acidity of 5 molar and solvent phase with 20% (v/v) TBP in kerosene were optimised to examine the hydrodynamic parameters of the mentioned column. The impacts of operating variables such as rotor speed, inlet aqueous phase velocity, and inlet solvent phase velocity on the dispersed phase hold-up, mean drop size, slip velocity, drop size distribution, and extraction rate were... 

    Analysis of non-newtonian fluids in microchannels with different wall materials

    , Article ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels ; 2009 , Pages 697-703 ; 9780791843499 (ISBN) Darbandi, M ; Behshad Shafii, M ; Safari Mohsenabad, S ; Sharif University of Technology
    Abstract
    The behavior of non-Newtonian fluids is considered as an important subject in micro scale and microfluidic flow researches. Because of the complexity and cost in the numerical works and the experimental set-ups in some instances, the analytical approach can be taken into account as a robust alternative tool to solve the non-Newtonian microfluidic flows in some special cases benefiting from a few simplified assumptions. In this work, we analyze the flow of two non-Newtonian fluids including the power-law and grade-fluid models in microchannels. For the grade-fluid, the stress tensors are defined considering the Rivlin-Ericksen tensor definitions. To avoid the complexities in the entrance...