Loading...
Search for: small-size-effect
0.009 seconds

    Formulation for static behavior of the viscoelastic Euler-Bernoulli micro-beam based on the modified couple stress theory

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 9, Issue PARTS A AND B , 2012 , Pages 129-135 ; 9780791845257 (ISBN) Taati, E ; Nikfar, M ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this work an analytical solution is presented for a viscoelastic micro-beam based on the modified couple stress theory which is a non-classical theory in continuum mechanics. The modified couple stress theory has the ability to consider small size effects in micro-structures. It is strongly emphasized that without considering these effects in such structures the solution will be wrong and not suitable for designing systems in micro-scales. In this study correspondence principle is used for deriving constitutive equations for viscoelastic material based on the modified couple stress theory. Governing equilibrium equations are obtained by considering an element of micro-beam. Closedform... 

    Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory

    , Article International Journal of Applied Mechanics ; Volume 11, Issue 1 , 2019 ; 17588251 (ISSN) Borjalilou, V ; Asghari, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    The small-scale effects on the thermoelastic damping (TED) in Euler-Bernoulli micro-beams is investigated in this study. To this purpose, by utilizing the strain gradient theory (SGT) and the dual-phase-lag (DPL) heat conduction model, the coupled equations of motion and heat conduction are derived. By solving these equations simultaneously and using the Galerkin method, the real and imaginary parts of the frequency and the amount of TED in thin micro-beams are obtained. The results predicted by SGT are compared with those given by the modified couple stress theory (MCST) and the classical continuum theory. In addition, TED is calculated on the basis of energy dissipation approach which... 

    Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory

    , Article International Journal of Applied Mechanics ; Volume 11, Issue 1 , 2019 ; 17588251 (ISSN) Borjalilou, V ; Asghari, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    The small-scale effects on the thermoelastic damping (TED) in Euler-Bernoulli micro-beams is investigated in this study. To this purpose, by utilizing the strain gradient theory (SGT) and the dual-phase-lag (DPL) heat conduction model, the coupled equations of motion and heat conduction are derived. By solving these equations simultaneously and using the Galerkin method, the real and imaginary parts of the frequency and the amount of TED in thin micro-beams are obtained. The results predicted by SGT are compared with those given by the modified couple stress theory (MCST) and the classical continuum theory. In addition, TED is calculated on the basis of energy dissipation approach which...