Loading...
Search for: smelting
0.01 seconds

    Gaseous reduction of manganese ores: A review and theoretical insight

    , Article Mineral Processing and Extractive Metallurgy Review ; Volume 41, Issue 3 , 2020 , Pages 198-215 Cheraghi, A ; Yoozbashizadeh, H ; Safarian, J ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Gaseous reduction of manganese ores has been studied as it is beneficial for both understanding the common ferromanganese production process and the development of new processes. Thermodynamics, kinetics, and the mechanisms of reduction by methane have been reviewed, supported by thermodynamic calculations from the commercial HSC Chemistry and FactSage software. While there were similarities in reduction process by CO and H2, methane was a more efficient reductant and yielded reduction levels beyond MnO, which was due to the large thermodynamic driving force for carbide formation by metastable methane. The practical aspects of gaseous reduction by methane, such as application of a... 

    Comparison of noise reduction techniques in RF SQUID magnetic detection systems

    , Article Proceedings - 2010 18th Iranian Conference on Electrical Engineering, ICEE 2010, 11 May 2010 through 13 May 2010 ; 2010 , Pages 446-449 ; 9781424467600 (ISBN) Sadeghi Jahed, N. M ; Sarreshtedari, F ; Forooghi, F ; Fardmanesh, M ; Schubert, J ; Banzet, M ; Sharif University of Technology
    Abstract
    The noise level of the magnetometer and gradiometer RF SQUIDs were investigated using different shielding methods. The used methods include different active and passive shielding, such as Helmholtz configurations, locally compensation coils, superconducting bulks and μ-metal shields. For the passive shielding approach, using FEM simulation we have investigated the shielding effectiveness of superconducting bulks versus the use of μ-metal shielding. The superconducting shield is a YBCO circular bulk, which was made using melt-texture method and located in a distance in front of the SQUID. In this work the results of these shielding methods are presented and compared, while their effectiveness... 

    Effect of predeformation and heat treatment conditions in the SIMA process on microstructural and mechanical properties of A319 aluminum alloy

    , Article Journal of Alloys and Compounds ; Volume 468, Issue 1-2 , 2009 , Pages 130-135 ; 09258388 (ISSN) Arami, H ; Khalifehzadeh, R ; Keyvan, H ; Khomamizadeh, F ; Sharif University of Technology
    2009
    Abstract
    In this study the influences of predeformation and heat treatment conditions on stress-induced melt activating process (SIMA) of A319 aluminum alloy were investigated. At 30% of predeformation a dominant globular structure of grains was obtained. However, further increasing of the predeformation rate considerably reduced the shape factor. The holding time of 10-15 min at semi-solid temperature of 580 °C was suggested in order to prevent grain growth. Coarsening of the grains by excess time or temperature of heat treatment reduced the tensile strength of the alloy. © 2008 Elsevier B.V. All rights reserved  

    Two-dimensional model of melt flows and interface instability in aluminum reduction cells

    , Article Light Metals 2008, New Orleans, LA, 9 March 2008 through 13 March 2008 ; 2008 , Pages 443-448 ; 01470809 (ISSN); 9780873397100 (ISBN) Kadkhodabeigi, M ; Sharif University of Technology
    2008
    Abstract
    We derive a new non-linear two dimensional model for melt flows and interface instability in aluminum reduction cells. This model is based on non-linear de St. Venant shallow water equations and contains the main features of an aluminum reduction cell. In this model we consider linear friction terms but in a new way that has not been considered in previous works. Our results are in good agreement with the results of simulation of viscous flow. This model is applicable both in determination of melt flows in molten aluminum and cryolite layers and also in finding the extreme limit for stability of interfacial waves in an aluminum reduction cell  

    Vibration analysis of a rotating FGM cantilever ARM

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 15 , 2010 , Pages 359-365 ; 9780791843888 (ISBN) Rahaeifard, M ; Moeini, S. A ; Kahrobaiyan, M. H ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    Functionally graded materials (FGMs) are inhomogeneous composites which are usually made of a mixture of metals and ceramics. Properties of these kinds of materials vary continuously and smoothly from a ceramic surface to a metallic surface in a specified direction of the structure. The gradient compositional variation of the constituents from one surface to the other provides an elegant solution to the problem of high transverse shear stresses that are induced when two dissimilar materials with large differences in material properties are bonded. FGMs have extracted much attention as advanced structural materials in recent years. In this paper, free vibration of a rotating FGM cantilever... 

    Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al-20Si-5Fe alloys

    , Article Materials Characterization ; Volume 60, Issue 11 , 2009 , Pages 1370-1381 ; 10445803 (ISSN) Rajabi, M ; Vahidi, M ; Simchi, A ; Davami, P ; Sharif University of Technology
    2009
    Abstract
    The aim of this work is to study the effect of cooling rate and subsequent hot consolidation on the microstructural features and mechanical strength of Al-20Si-5Fe-2X (X = Cu, Ni and Cr) alloys. Powder and ribbons were produced by gas atomization and melt spinning processes at two different cooling rates of 1 × 105 K/s and 5 × 107 K/s. The microstructure of the products was examined using optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The particles were consolidated by hot pressing at 400 °C/250 MPa/1 h under a high purity argon atmosphere and the microstructure, hardness and compressive strength of the compacts were evaluated.... 

    Mechanical induced reaction in Al-CuO system for in-situ fabrication of Al based nanocomposites

    , Article Journal of Alloys and Compounds ; Volume 465, Issue 1-2 , 2008 , Pages 151-156 ; 09258388 (ISSN) Arami, H ; Simchi, A ; Seyed Reihani, S. M ; Sharif University of Technology
    2008
    Abstract
    Gradual chemical (displacement) reaction between CuO and Al powders during high-energy attrition milling under a high purity argon atmosphere was studied. Differential thermal analysis (DTA), X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques were employed to study the solid-state reaction. It was shown that the solid-state reaction occurred during mechanical alloying (MA) and resulted in the dissolution of copper into the aluminum lattice and formation of nanometric alumina particles. The reinforcement particles were mostly distributed at the grain boundaries of Al matrix with an average crystallite size of about 50 nm. In DTA curve of the milled powders, a small...