Loading...
Search for: social-cost
0.012 seconds

    A Closed-loop Green Supply Chain Network Design Using Robust Optimization

    , M.Sc. Thesis Sharif University of Technology Jafarnejad, Nasim (Author) ; Fereydoon, Kianfar (Supervisor)
    Abstract
    Network design is one of the major strategic decisions of a supply chain which leads to the whole sustainability of the chain. Besides, due to an increase in carbon dioxide emissions and its harmful effects, recently there has been an growing interest in green supply chain network design. In this thesis, a mixed integer linear programming is developed to formulate a closed-loop supply chain with forward and reverse logistics. Moreover, social cost rate of carbon dioxide is used to consider environmental impact. Considering uncertainty in closed-loop supply chains is crucial. To do so, three robust optimization methods including Soyster, Ben-tal and Nemirovski and Bertsimas and Sim approaches... 

    Developing a New Method to Estimate Taxing Electricity Sector Carbon Emissions based on Social Cost of Carbon Emissions

    , M.Sc. Thesis Sharif University of Technology Shahbazi Seifabad, Ashkan (Author) ; Avami, Akram (Supervisor) ; Moeini Aghtaei, Moein (Co-Supervisor)
    Abstract
    Controlling, managing, and mitigating the emission of greenhouse gases, especially carbon dioxide, which are produced by human activities, are one of the main concerns of researchers today. Market-based methods are one the successful methods to enhance controlling, managing, and mitigating carbon dioxide emissions, among which the carbon tax has received more attention. Increasing clean technologies in the electricity network to the reduce the emissions of the electricity industry may reduce the carbon tax rate. In this regard, the life cycle analysis makes it possible to consider the emissions of the life cycle. The present model is applied for two representative days of Iran's electricity... 

    Optimisation of micro gas turbine by exergy, economic and environmental (3E) analysis

    , Article International Journal of Exergy ; Volume 7, Issue 1 , 2010 , Pages 1-19 ; 17428297 (ISSN) Mozafari, A ; Ahmadi, A ; Ehyaei, M. A ; Sharif University of Technology
    2010
    Abstract
    This research proposes a new method for optimisation of a power generation system based on exergy fuel cost and external social cost of air pollution. A thermodynamic model is provided to estimate the outlet mass flow rates of CO2, CO, NO and NO2 for a gas turbine based on maximising the first and second law efficiencies and minimising the objective function. Results show that inclusion of the external social cost of air pollution increases the optimum excess air ratio if temperature constraint due to metallurgical consideration is disregarded. Otherwise external social cost of air pollution is independent of optimised conditions  

    Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant

    , Article Energy ; Volume 36, Issue 12 , December , 2011 , Pages 6851-6861 ; 03605442 (ISSN) Ehyaei, M. A ; Mozafari, A ; Alibiglou, M. H ; Sharif University of Technology
    2011
    Abstract
    In the present paper, the effects of inlet fogging system on the first and second law efficiencies are investigated for a typical power plant (Shahid Rajaee) which is located near Ghazvin in Iran. Also a new function is proposed for system optimization that includes the social cost of air pollution for power generating systems. The new function is based on the first law efficiency, energy cost and the external social cost of air pollution for an operational system. Social cost of air pollution is based on the negative effects of air pollution on the health of society and environment. The economic aspect of these effects is called external social cost of air pollution. Other pollution sources... 

    Exergy, economic, and environmental analysis of a PEM fuel cell power system to meet electrical and thermal energy needs of residential buildings

    , Article Journal of Fuel Cell Science and Technology ; Volume 9, Issue 5 , 2012 ; 1550624X (ISSN) Ashari, G. R ; Ehyaei, M. A ; Mozafari, A ; Atabi, F ; Hajidavalloo, E ; Shalbaf, S ; Sharif University of Technology
    ASME  2012
    Abstract
    In this paper, a Polymer Electrolyte Membrane (PEM) fuel cell power system including burner, steam reformer, heat exchanger, and water heater has been considered. A PEM fuel cell system is designed to meet the electrical, domestic hot water, heating, and cooling loads of a residential building located in Tehran. Operating conditions of the system with consideration of the electricity cost has been studied. The cost includes social cost of the environmental pollutants (e.g. CO 2, CO and NO). The results show that the maximum energy needs of the building can be met by 12 fuel cell stacks with nominal capacity of 8.5 kW. Annual average electricity cost of thissystem is equal to 0.39 US$/kWh and... 

    A scenario-based multi-objective model for multi-stage transmission expansion planning

    , Article IEEE Transactions on Power Systems ; Volume 26, Issue 1 , May , 2011 , Pages 470-478 ; 08858950 (ISSN) Maghouli, P ; Hosseini, S. H ; Oloomi Buygi, M ; Shahidehpour, M ; Sharif University of Technology
    2011
    Abstract
    The unbundling of the electricity industry introduced new uncertainties and escalated the existing ones in transmission expansion planning. In this paper, a multi-stage transmission expansion methodology is presented using a multi-objective optimization framework with internal scenario analysis. Total social cost (TSC), maximum regret (robustness criterion), and maximum adjustment cost (flexibility criterion) are considered as three optimization objectives. Uncertainties are considered by defining a number of scenarios. To overcome the difficulties in solving the nonconvex and mixed integer optimization problem, the genetic-based Non-dominated Sorting Genetic Algorithm (NSGA II) is used.... 

    Development of a mathematical methodology to investigate biohydrogen production from regional and national agricultural crop residues: A case study of Iran

    , Article International Journal of Hydrogen Energy ; Volume 42, Issue 4 , 2017 , Pages 1989-2007 ; 03603199 (ISSN) Asadi, N ; Karimi Alavijeh, M ; Zilouei, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    This study aims to construct a quantitative framework to assess biological production of hydrogen from agricultural residues in a country or region. The presented model is able to determine proper crops for biohydrogen production, its possible applications and use as well as environmental aspects. A multiplicative decomposition method was designed to forecast future production and Monte Carlo simulation was employed in the model to evaluate the risk of estimations. From 2013 to 2050, the hydrogen production capacity could increase from 53.59 to 164.41 kilotonnes (kt) in Iran. The highest contribution to biohydrogen production (52.1% in 2013 and 73.3% in 2050) belongs to cereal crops... 

    Bi-level planning of distributed energy resources into existing transmission grids: Pathway to sustainable energy systems

    , Article IET Generation, Transmission and Distribution ; Volume 16, Issue 24 , 2022 , Pages 4963-4979 ; 17518687 (ISSN) Ranjbar, H ; Saber, H ; Sharifzadeh, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    This paper presents a novel stochastic planning framework for the integration of renewable distributed energy resources (DERs) into existing power systems without relying on new investments in the transmission networks. The upper-level problem of the proposed model aims at minimizing the total expected social cost of supplying demand that includes the expected cost of getting energy from conventional generating units and DERs, the congestion cost of transmission networks, and the greenhouse gas (GHG) emission cost, while each of the privately invested DER satisfies a specified rate of return. The lower-level problem clears the electricity market to find locational marginal prices (LMPs) and... 

    Peer-to-Peer energy sharing among smart energy hubs in an integrated heat-electricity network

    , Article Electric Power Systems Research ; Volume 206 , 2022 ; 03787796 (ISSN) Daryan, A. G ; Sheikhi, A ; Ashouri Zadeh, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    By increasing the penetration level of the combined heat and power systems and demand response programs between energy consumers in the distribution network, the interaction between electricity and the natural gas network becomes more complicated. This paper proposes a peer-to-peer (P2P) energy sharing scheme for energy trading among Smart Energy Hubs (S.E. Hubs) which can trade both electrical and thermal energy with each other to reduce their cost and, reduce their dependency to gas and electricity utility companies. A two-stage energy strategy is presented. In the first stage, the S.E. Hubs total social cost is reduced by finding the optimal energy sharing profiles. And, in the second... 

    Effects of regeneration heat exchanger on entropy, electricity cost, and environmental pollution produced by micro gas turbine system

    , Article International Journal of Green Energy ; Volume 9, Issue 1 , Jan , 2012 , Pages 51-70 ; 15435075 (ISSN) Mozafari, A ; Ehyaei, M. A ; Sharif University of Technology
    2012
    Abstract
    A new method has been employed in this research that optimizes a power generation system by maximizing the first and second law efficiencies and minimizing the entropy generation. Mass flow rates of pollutants and related external social cost of air pollution have been considered in estimating the electricity production cost. The effects of regenerative and CHP heat exchangers on power production, efficiencies, and production cost have been evaluated. The results show that a single regenerative heat exchanger lowers NOx, CO, and CO 2 emissions by 15%, 40%, and 0.4%, respectively, and decreases the electricity production cost by nearly 18%. A single CHP heat exchanger has little influence on... 

    A framework for compromising between power generation cost and power system security in regulated market using MO-OPF

    , Article EPEC 2010 - IEEE Electrical Power and Energy Conference: "Sustainable Energy for an Intelligent Grid", 25 August 2010 through 27 August 2010 ; 2010 ; 9781424481880 (ISBN) Arabali, A ; Sotoodeh, P ; Khosravi, H ; Pishvaie, M ; Sharif University of Technology
    Abstract
    Transmission line congestion in electricity market is lead to increase the energy cost and change in local marginal prices. So, it is probable that the market power is manifested. Market power may prevent the full competition in Electricity Market. Moreover, in this condition, with operating of power system in its boundary conditions, the system may be damaged and the security of the system may be disturbed. On the other hand, decreasing the line flows from their optimal value, cost and consequently, price of energy are increased. So, there is need to have a compromise between the line flow decrease and the cost those impose. In this paper, a framework for compromising between social cost...