Loading...
Search for: sodium-azide
0.008 seconds

    A novel highly dispersive magnetic nanocatalyst in water : Glucose as an efficient and green ligand for the immobilization of copper(II) for the cycloaddition of alkynes to azides

    , Article RSC Advances ; Volume 6, Issue 83 , 2016 , Pages 80234-80243 ; 20462069 (ISSN) Matloubi Moghaddam, F ; Saberi, V ; Kalhor, S ; Ayati, S. E ; Sharif University of Technology
    Royal Society of Chemistry 
    Abstract
    A new heterogeneous and highly dispersive nanocatalyst in water was prepared by the immobilization of Cu2+ onto glucose on Fe3O4. The catalyst was fully characterized by FT-IR, TGA, CHN, SEM, EDX, and atomic absorption spectroscopy. The synthesized catalyst was used in the synthesis of different derivatives of 1,2,3-triazole via a one-pot three-component reaction of alkynes, alkyl halides, and sodium azide. To the best of our knowledge, this novel catalyst adheres to the principles of green chemistry. The nanocatalyst could be recycled and reused in several runs without significant loss of activity  

    MCM-41-SO3H as an efficient reusable nano-ordered heterogeneous catalyst for the synthesis of divers 1- & 5-substituted 1H-tetrazoles

    , Article Scientia Iranica ; Volume 26, Issue 3 C , 2019 , Pages 1463-1473 ; 10263098 (ISSN) Matloubi Moghaddam, F ; Eslami, M ; Ghadirian, N ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    An improved and efficient method for the synthesis of 1- & 5-substituted 1Htetrazole derivatives was described in the presence of nano-ordered MCM-41-SO3H as an effective heterogeneous catalyst. This metal-free protocol, [2 + 3] cycloaddition of sodium azide to various nitriles or ethyl N-phenyl formimidate intermediate under mild reaction conditions, provides a wide range of 1H-tetrazoles in good to excellent yields. The catalyst was reused five times without significant loss of catalytic activity. © 2019 Sharif University of Technology. All rights reserved  

    MCM-41-SO3H as an efficient reusable nano-ordered heterogeneous catalyst for the synthesis of divers 1- & 5-substituted 1H-tetrazoles

    , Article Scientia Iranica ; Volume 26, Issue 3 C , 2019 , Pages 1463-1473 ; 10263098 (ISSN) Matloubi Moghaddam, F ; Eslami, M ; Ghadirian, N ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    An improved and efficient method for the synthesis of 1- & 5-substituted 1Htetrazole derivatives was described in the presence of nano-ordered MCM-41-SO3H as an effective heterogeneous catalyst. This metal-free protocol, [2 + 3] cycloaddition of sodium azide to various nitriles or ethyl N-phenyl formimidate intermediate under mild reaction conditions, provides a wide range of 1H-tetrazoles in good to excellent yields. The catalyst was reused five times without significant loss of catalytic activity. © 2019 Sharif University of Technology. All rights reserved  

    SBA-15-supported copper (II) complex: an efficient heterogeneous catalyst for azide-alkyne cycloaddition in water

    , Article Scientia Iranica ; Volume 25, Issue 3C , 2018 , Pages 1335-1343 ; 10263098 (ISSN) Bagherzadeh, M ; Mahmoudi, H ; Amini, M ; Gautam, S ; Chae, K. H ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    The reaction of the functionalized mesoporous SBA-15 in absolute ethanol with copper (II) acetate afforded a novel CuII-Schiff base/SBA-15 catalyst. The compound CuII-Schiff base/SBA-15 was characterized by IR spectroscopy, small-angle X-ray diffraction (SAX), Energy Dispersive X-ray Spectroscopy (EDXS), X-ray Absorption Near Edge Structure (XANES), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and N2 adsorption/desorption studies. Further, the catalytic activity of this well-defined material was tested in three-component Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC) reactions to obtain 1,4-disubstituted-1,2,3-triazoles in good to excellent yields from an... 

    Biodegradation of synthetic dye using partially purified and characterized laccase and its proposed mechanism

    , Article International Journal of Environmental Science and Technology ; Volume 16, Issue 12 , 2019 , Pages 7805-7816 ; 17351472 (ISSN) Ghobadi Nejad, Z ; Borghei, S. M ; Yaghmaei, S ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2019
    Abstract
    The supernatant obtained from the extracellular laccase produced by Phanerochaete chrysosporium was used as the enzyme source to conduct a partial purification, characterization and dye decolorization study. The partially purified enzyme was stable in the pH range of 3–5 and showed an optimum activity at pH 4.0, using guaiacol as a substrate. Laccase stability of pH was determined and discovered to retain 100% of its activity at a pH of 4.0 after 2 h. The maximum enzyme activity was obtained between 30 and 50 °C. The maximum velocity and Michaelis constant were calculated as 3.171 µM−1·min and 1628.23 µM, respectively. The enzyme was activated by Fe2+, Zn2+, Ca2+ and Cu2+, while Hg2+, Mn2+,... 

    Enhancement of PMS activation in an UV/ozone process for cyanide degradation: a comprehensive study

    , Article Pigment and Resin Technology ; Volume 49, Issue 5 , August , 2020 , Pages 409-414 ; ISSN: 03699420 Goodarzvand Chegini, Z ; Hassani, H ; Torabian, A ; Borghei, S. M ; Sharif University of Technology
    Emerald Group Publishing Ltd  2020
    Abstract
    Purpose: This paper aims to study peroxymonosulfate (PMS) activation in the ultraviolet (UV)/ozone process for toxic cyanide degradation from aqueous solution by a novel and simple method. Design/methodology/approach: Photocatalytic degradation of cyanide (CN-) was carried out using a bench-scale photoreactor. Optimization of the UV/ozone process for the highest removal of cyanide was obtained. The effect of parameters such as ozone concentration, PMS concentration, temperature, cations (Cu2+, Co2+ and Fe2+), cyanide concentration, anions (bicarbonate, carbonate, chloride, nitrite, nitrate and sulfate [SO42−]) and scavengers (ethanol [EtOH], humic acid, TBA and NaN3) was investigated for CN-...