Loading...
Search for: soil-structure-interactions
0.007 seconds
Total 124 records

    The effect of foundation uplift on elastic response of soil-structure systems

    , Article International Journal of Civil Engineering ; Vol. 12, issue. 2 A , 2014 , p. 244-256 Jafarieh, A. H ; Ghannad, M. A ; Sharif University of Technology
    Abstract
    It is well-known that the behavior of soil-structure systems can be well described using a limited number of nondimensional parameters. This is the outcome of researches based on the premise that the foundation is bonded to the ground. Here, it is shown the concept can be extended to systems with foundation uplift. A set of non-dimensional parameters are introduced which controls the main features of uplifting systems. The effect of foundation uplift on response of soil-structure systems are investigated parametrically through time history analysis for a wide range of systems subjected to ground motions recorded on different soil types. In particular, the effects of uplift on displacement... 

    Seismic performance of nonlinear soil-structure systems located on soft soil considering foundation uplifting and soil yielding

    , Article Structures ; Volume 28 , December , 2020 , Pages 973-982 Jafarieh, A. H ; Ghannad, M. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In most of researches on soil-structure systems, it is assumed that the foundation is bonded to the ground where no foundation uplift is allowed. Uplifting makes changes in force–displacement behavior of the soil-structure systems, which in turn alters structural demands. In this research, a set of non-dimensional parameters is considered which controls the behavior of uplifting systems. The effects of foundation uplift on response of soil-structure system are investigated parametrically through time history analysis for a wide range of systems subjected to harmonic excitation and also ground motions recorded on soft soil with predominant period. It is seen that the response of systems with... 

    Numerical investigation of stability of deep excavations supported by soil-nailing method

    , Article Geomechanics and Geoengineering ; Volume 16, Issue 6 , 2021 , Pages 434-451 ; 17486025 (ISSN) Pak, A ; Maleki, J ; Aghakhani, N ; Yousefi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Deep excavation in urban areas can cause instability problems due to significant settlement at the ground surface and large movements at the excavation facing walls. One of the most popular methods used to stabilise these excavations is utilising soil-nailing method. This method has also been widely used to stabilise natural slopes and earth retaining structures. Because of the complexity involved in the mechanism of this stabilising system due to interacting effects of the soil, nails, grout and shotcrete, numerical modelling with high accuracy should be used to analyse the behaviour of the soil-nailed walls. Considering all aspects of soil-structure interaction in the present research, a... 

    Blind modal identification of structures from spatially sparse seismic response signals

    , Article Structural Control and Health Monitoring ; Vol. 21, issue. 5 , May , 2014 , p. 649-674 Ghahari, S. F ; Abazarsa, F ; Ghannad, M. A ; Celebi, M ; Taciroglu, E ; Sharif University of Technology
    Abstract
    Response-only identification of civil structureshas attracted much attention during recent years, as input excitations are rarely measurable for ambient vibrations. Although various techniques have been developed by which identification can be carried out using ambient responses, these techniques are generally not applicable to non-stationary excitations that structures experience during moderate-to-severe earthquakes. Recently, the authors proposed a new response-only modal identification method that is applicable to strong shaking data. This new method is highly attractive for cases in which the true input motions are unavailable. For example, when soil-structure interaction effects are... 

    Equivalent linear model for existing soil-structure systems

    , Article International Journal of Structural Stability and Dynamics ; Volume 16, Issue 2 , 2016 ; 02194554 (ISSN) Sameti, A. R ; Ghannad, M. A ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd 
    Abstract
    The concept of equivalent linearization is extended for the soil-structure systems, in which the strength ratio (defined as the ratio of the yielding strength to the elastic strength demand) is known rather than the ductility ratio. The nonlinear soil-structure system is replaced by a linear single-degree-of-freedom (SDOF) system, which can capture the response of the actual system with sufficient accuracy. The dynamic characteristics of the equivalent linear SDOF system are determined through a statistical approach. The super-structure is modeled by an inelastic SDOF system with bilinear behavior, and the homogeneous half space beneath the structure by a discrete model, following the Cone... 

    Soil-Structure interaction effect on fragility curve of 3D models of concrete moment-resisting buildings

    , Article Shock and Vibration ; Volume 2018 , 2018 ; 10709622 (ISSN) Anvarsamarin, A ; Rahimzadeh Rofooei, F ; Nekooei, M ; Sharif University of Technology
    Hindawi Limited  2018
    Abstract
    This paper presents the probabilistic generation of collapse fragility curves for evaluating the performance of 3D, reinforced concrete (RC) moment-resisting building models, considering soil-structure interaction (SSI) by concentration on seismic uncertainties. It considers collapse as the loss of lateral load-resisting capacity of the building structures due to severe ground shaking and consequent large interstory drifts intensified by P-Δ effects as well as the strength and stiffness deterioration of their lateral load carrying systems. The estimation of the collapse performance of structures requires the relation between the intensity measure (IM) and the probability of collapse... 

    The effect of soil-structure interaction on damage index of buildings

    , Article Engineering Structures ; Volume 30, Issue 6 , 2008 , Pages 1491-1499 ; 01410296 (ISSN) Nakhaei, M ; Ali Ghannad, M ; Sharif University of Technology
    2008
    Abstract
    The effect of Soil-Structure Interaction (SSI) on Park and Ang Damage Index in a Bilinear-SDOF model is investigated under seismic loading. This is done through an extensive parametric study. Two non-dimensional parameters are used as the key parameters which control the severity of SSI: (1) a non-dimensional frequency as the structure-to-soil stiffness ratio index and (2) the aspect ratio of the structure. The soil beneath the structure is considered as a homogeneous elastic half space and is modeled using the concept of Cone Models. The system is then subjected to three different earthquake ground motions as the representative motions recorded on different soil conditions. The analysis is... 

    Site-dependent strength reduction factors for soil-structure systems

    , Article Soil Dynamics and Earthquake Engineering ; Volume 27, Issue 2 , 2007 , Pages 99-110 ; 02677261 (ISSN) Ghannad, M. A ; Jahankhah, H ; Sharif University of Technology
    2007
    Abstract
    The effect of soil conditions on strength reduction factors (SRFs) is investigated. Both site effect and soil-structure interaction (SSI) effect are considered in the study with special emphasis on the latter effect. The structure is modeled as an elasto-plastic single degree of freedom (SDOF) system, whereas the underlying soil is considered as a homogeneous half-space. The half-space is also replaced by a simplified 3DOF system, based on the concept of Cone Models. The whole 4DOF model is then analyzed under a total of 54 strong motions recorded on different soil types. A parametric study is done for a wide range of non-dimensional parameters, which completely define the problem. It is... 

    Probabilistic Estimation of Maximum Inelastic Displacement Demands for Performance-Based Design Considering Soil-Structure Interaction

    , M.Sc. Thesis Sharif University of Technology Aboutorabian, Elham (Author) ; Rahimzadeh Rofooei, Fayaz (Supervisor)
    Abstract
    In the current design Codes, the estimation of maximum inelastic Single Degree Of Freedom (SDOF) displacements is done through simplified procedures by either applying modification factors on maximum SDOF elastic displacement demands or by considering equivalent SDOF systems with elongated fundamental period and increased damping ratio. Thus, the inherent uncertainty caused by approximating maximum inelastic displacements with maximum elastic displacements is neglected. On the other hand, in time history dynamic analysis of structures, the free field recorded ground motions are applied to the base of structures. Obviously, this procedure would be correct when the structure is built on firm... 

    A plasticity-based constitutive model for the behavior of soil-structure interfaces under cyclic loading

    , Article Transportation Geotechnics ; Volume 14 , 2018 , Pages 41-51 ; 22143912 (ISSN) Hosseinali, M ; Toufigh, V ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, a new plasticity-based constitutive model is proposed for the behavior of soil-structure interfaces under monotonic and cyclic loadings. The features of the interface including the strain-softening behavior, phase transformation, steady-state, and dilatancy behavior were described by the proposed model with satisfactory accuracy. The proposed model does not require additional concepts such as damage or disturbance, and the model parameters can be obtained easily using straight-forward analyses of the results obtained from constant normal stress tests. Moreover, the results of the proposed model showed its capability in predicting the experimental results obtained from various... 

    Assessment of foundation mass and earthquake input mechanism effect on dam–reservoir–foundation system response

    , Article International Journal of Civil Engineering ; Volume 17, Issue 4 , 2019 , Pages 473-480 ; 17350522 (ISSN) Ghaemian, M ; Noorzad, A ; Mohammadnezhad, H ; Sharif University of Technology
    Springer International Publishing  2019
    Abstract
    Concrete dams are one of the most important infrastructures in every country and the seismic safety assessment of them is a major task in dam engineering field. Dam–foundation–reservoir system analysis is a complex interaction problem because this system consists of three domains with different behaviors. For accurate analysis of this system, some important factors should be considered such as foundation mass and earthquake input mechanism. In this paper, the effect of foundation mass and earthquake input mechanism on seismic response of concrete gravity dam is investigated. For this purpose, two different methods are introduced for modeling of massed semi-infinite foundation in finite... 

    The effect of soil-structure interaction on hysteretic energy demand of buildings

    , Article Structural Engineering and Mechanics ; Volume 24, Issue 5 , 2006 , Pages 641-645 ; 12254568 (ISSN) Nakhaei, M ; Ghannad, M. A ; Sharif University of Technology
    Techno-Press  2006
    Abstract
    The effect of soil-structure interaction (SSI) on hysteresis energy demand of buildings using an ensemble of alluvium site records was investigated. The structure and the soil were molded separately and then combined to constitute the soil-structure model using the sub-structure method. The key parameters effecting the response of the soil-structure system were found to be a non-dimensional frequency as a representative of structure to soil stiffness ratio; and aspect ratio of the building. It was found that the hysteric energy dissipated in a structure under an earthquake can be highly effected when the stiffness of the soil beneath the structure is altered  

    Probabilistic analysis of soil-structure interaction effects on the seismic performance of structures

    , Article Earthquake Engineering and Structural Dynamics ; Volume 46, Issue 4 , 2017 , Pages 641-660 ; 00988847 (ISSN) Mirzaie, F ; Mahsuli, M ; Ghannad, M. A ; Sharif University of Technology
    Abstract
    This paper revisits the phenomenon of dynamic soil-structure interaction (SSI) with a probabilistic approach. For this purpose, a twofold objective is pursued. First, the effect of SSI on inelastic response of the structure is studied considering the prevailing uncertainties. Second, the consequence of practicing SSI provisions of the current seismic design codes on the structural performance is investigated in a probabilistic framework. The soil-structure system is modeled by the sub-structure method. The uncertainty in the properties of the soil and the structure is described by random variables that are input to this model. Monte Carlo sampling analysis is employed to compute the... 

    Investigating the Effect of Bi-Directional Input for Near Field Earthquakes Considering the Soil Structure Interaction

    , M.Sc. Thesis Sharif University of Technology Heydari Asl, Saeedeh (Author) ; Rahimzadeh Rofooie, Fayyaz (Supervisor)
    Abstract
    One of the main issues concerning the irregular building structures is the determination of the critical directions of earthquake input to them that leads to maximum structural response parameters. In applying the seismic excitations to the structures, there is always a critical direction in which the application of seismic loads in those directions, would cause the structural system to experience its maximum responses. Therefore, considering the probability of positioning of the structure’s principal axes in that critical direction, the structure needs to be designed based on the critical seismic induced demands. In this project, the CQC3 method has been used to determine the critical... 

    Evaluation of the Change in Friction Dampers’ Optimal Slip Load in 3-D StructuralModels Due to Soil-Structure Interaction

    , M.Sc. Thesis Sharif University of Technology Tahmasebi, Ebrahim (Author) ; Rahimzadeh Rofooei, Fayyaz (Supervisor)
    Abstract
    In this study, the change in friction damper’s optimal slip load in 3-D structures due to soil-structure interaction was evaluated. Using AISC-LRFD code, an 8 story shear building has been designed considering gravitational and equivalent static lateral loads. Then, the changes in friction damper’s optimal slip load due to PGA and soil type variation were studied. In this part two PGAs and two soil types were considered. Seven strong ground motions, recorded on soil types E and D was used for each of the two soil types. After normalizing the PGAs of selected records, these records were used for dynamic time history analyses. In the next step, the soil-structure interaction effect has been... 

    Earthquake Branch

    , M.Sc. Thesis Sharif University of Technology Bagher Shemirani, Ali Reza (Author) ; Bakhshi, Ali (Supervisor)
    Abstract
    In the past few decades, shaking tables are widely used to evaluate system response of structures under seismic excitations. These devices are used without any fundamental research performed on a shaking table system as an entity model. In most of these studies for simplicity, it is assumed that there exist no considerable vibration and displacement around the shaking tables, and no attention is paid to the peripheral substances such as soil settled under the foundation.
    In this thesis, result of ambient vibration test on shaking table system (solid deck, concrete foundation and soil layer) has been presented. Precise sensors known as low frequency and high accuracy accelerometers have... 

    Upgrading the Existing Methods for Seismic Evaluation of Soil-Structure Systems with Embedded Foundation

    , Ph.D. Dissertation Sharif University of Technology Jahankhah, Hossein (Author) ; Ghannad, Mohammad Ali (Supervisor)
    Abstract
    Base flexibility of structures, cause changes in seismic input motions to the structure, and hence, result in variations in structural seismic responses. This phenomenon is commonly referred to as soil-structure interaction (SSI). The effect of base flexibility on seismic responses is usually investigated from two main aspects: 1) Kinematic interaction (KI) , 2) Inertial Interaction (II). KI effects are induced, first, because of the stiffness contrast between the foundation and the flexible base, and second, because of phase difference of the receiving waves in the contact boundary between the foundation and the flexible base. These effects may results in variations in frequency content of... 

    On the Application of Viscous Fluid Dampers in Improving the Seismic Torsional Response of Asymmetric Concrete Buildings Considering the Soil-Structure Interaction

    , M.Sc. Thesis Sharif University of Technology Mohammadzadeh Osalou, Sahar (Author) ; Rahimzadeh Rofooei, Fayyaz (Supervisor)
    Abstract
    The feasibility of passive energy dissipation devices such as viscous fluid dampers in controlling the torsional response of structures against seismic loadings has been explored by different researchers in recent years. In the majority of these studies, it is assumed that the structures are located on rigid bases. On the other hand, the effect of Soil-Structure Interaction (SSI) for the structures located on soft soil, on their dynamic parameters and structural responses can be prominent. In this study, the application of viscous fluid dampers in improving the torsional behavior of asymmetric concrete moment resisting frame buildings is investigated, taking into account the soil-structure... 

    3-D Seismic Evaluation of on Grade Cylindrical Flexible Storage Tanks Considering Soil-Structure Interaction

    , M.Sc. Thesis Sharif University of Technology Andalib, Reza (Author) ; Rahimzadeh Rofooei, Fayaz (Supervisor)
    Abstract
    The circular flexible cylindrical liquid tanks usually are made of steel or aluminum and in majority of cases are built on grade due to its economic advantages. The most important part of a safe design of a storage tanks is the accurate estimation of the seismically induced lateral forces that should be transferred to its base through the tank shell and its support. Seismic behavior of liquid storage tanks is quite different from regular buildings and industrial structures due to its nonlinear behavior caused by complex distribution of hydrodynamic pressure, buckling of its walls, etc.. Moreover, the effect of rocking motion caused by the under laying soft soil, on its response parameters... 

    Development of Fragility Curves of Confined Masonry Buildings

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Mohammad Hossein (Author) ; Bakhshi, Ali (Supervisor)
    Abstract
    Masonry buildings are one of the most vulnerable structures against earthquakes, and therefore their seismic response should be evaluated in order to mitigate casualties in the future. Although there are numerous experimental and analytical studies on these buildings, few have aimed on Confined Masonry (CM) buildings to simulate and predict their seismic performance. To estimate damage, assess vulnerability and choose the best retrofitting method, fragility curves can be utilized as a powerful tool. In this paper, the hysteretic behavior of two typical CM walls with and without opening is calibrated in both In-plane (IP) and Out-of-Plane (OOP) loading directions making use of OPENSEES...