Loading...
Search for: solar-power-conversion
0.006 seconds

    Quasi core/shell lead sulfide/graphene quantum dots for bulk heterojunction solar cells

    , Article Journal of Physical Chemistry C ; Volume 119, Issue 33 , 2015 , Pages 18886-18895 ; 19327447 (ISSN) Tavakoli, M. M ; Aashuri, H ; Simchi, A ; Kalytchuk, S ; Fan, Z ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    Hybrid nanostructures combining semiconductor quantum dots and graphene are attracting increasing attention because of their optoelectronic properties promising for photovoltaic applications. We present a hot-injection synthesis of a colloidal nanostructure which we define as quasi core/shell PbS/graphene quantum dots due to the incomplete passivation of PbS surfaces with an ultrathin layer of graphene. Simulation by density functional theory of a prototypical model of a nonstoichiometric Pb-rich core (400 atoms) coated by graphene (20 atoms for each graphene sheet) indicates the possibility of surface passivation of (111) planes of PbS with graphene resulting in a decrease in trap states... 

    Surface engineering of pbs colloidal quantum dots using atomic passivation for photovoltaic applications

    , Article 8th International Conference on Materials for Advanced Technologies, 28 June 2015 through 3 July 2015 ; Volume 139 , 2016 , Pages 117-122 ; 18777058 (ISSN) Tavakoli, M. M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Solution-processed quantum dots (QDs) have attracted significant attention for the low-cost fabrication of optoelectronic devices. Here, we synthesized PbS QDs via hot injection method and passivated the trap states by using short thiols and dopant elements for photovoltaic application. In order to study the effect of dopants on photovoltaic application, PbS QDs were doped by using three different cations: Cadmium, Calcium, and Zinc. We utilized Time resolvel Photoluminescence measurement to study the carriers lifetime for different samples and found that the carriers life time increases ∼80% by using Cd as a dopant compared with undoped sample. In addition, the results of J-V measurement...