Loading...
Search for: solidification-rate
0.004 seconds

    Effect of Solidification Rate of Copper Anodes on the Chemical and Electrochemical Dissolution during Electrorefining

    , M.Sc. Thesis Sharif University of Technology bagheri, Reza (Author) ; Yoozbashizadeh, Hossein (Supervisor)
    Abstract
    In the present work,the effect of solidification rate on the electrochemical behavior of copperanodes of Sarcheshmeh copper complex has been studied.Inthis regard, three cylindrical coppers pecimens with different solidificationrates casted into water-cooled metal mold (A specimen), metal mold (B specimen) and sand mold (C specimen). Cylinders for microstructural and electrochemical investigation, alongthickness dividedinto several specimens. To investigate themicrostructure of the specimens, opticalmicroscopyand scanning electron microscopy(SEM)were used. ICP testhasbeen usedforelemental analysis of each specimen; and eventuallytoinvestigate theelectrochemical behavior ofeach of... 

    A comprehensive study on the complete charging-discharging cycle of a phase change material using intermediate boiling fluid to control energy flow

    , Article Journal of Energy Storage ; Volume 35 , 2021 ; 2352152X (ISSN) Hosseininaveh, H ; Mohammadi, O ; Faghiri, S ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The low melting and solidification rates of phase change materials (PCM), which traces back to their low thermal conductivity coefficient, has led the application of these materials to face limitations. This paper aims to explore the effectiveness of a novel method called intermediate boiling fluid (IBF) in speeding up the energy storage and transfer processes in PCMs during a complete charging-discharging cycle. Throughout this novel technique, paraffin and acetone are utilized as PCM and IBF, respectively. In the solidification process, there is no direct contact between the cold source and the molten paraffin, while acetone, as an intermediate fluid, is being boiled via absorbing... 

    Super-fast discharge of phase change materials by using an intermediate boiling fluid

    , Article International Communications in Heat and Mass Transfer ; Volume 115 , 2020 Zahrae Ramazani, H ; Mohammadi, O ; Rahgozar, I ; Shafii, M. B ; Ahmadi, M. H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The low thermal conductivity of phase change materials (PCM) results in the slowdown in the discharging process of PCM which limits the usability of these materials in the field of Thermal Energy Storage (TES). In this research, an innovative solution is proposed to significantly accelerate the solidification speed, up to two orders of magnitude greater than conventional methods. Using acetone as the intermediate boiling fluid (IBF), the paraffin discharge rate as a phase-change material is significantly improved which is known as super-fast discharge (SFD) in this article. In this method, liquid acetone takes the heat by boiling in liquid paraffin and causes it to solidify. As the liquid... 

    The impact of employing carbon nanotube and Fe3O4 nanoparticles along with intermediate boiling fluid to improve the discharge rate of phase change material

    , Article Applied Thermal Engineering ; Volume 215 , 2022 ; 13594311 (ISSN) Hosseininaveh, H ; Rahgozar Abadi, I ; Mohammadi, O ; Khademi, A ; Behshad Shafii, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Despite the fact that solid–liquid phase change materials (PCMs) have various applications in thermal energy storage systems, the low solidification rate of PCMs, which is due to the low thermal conductivity has limited the range of applications of PCMs. One of the methods of increasing the solidification rate of PCMs is using a boiling fluid as an intermediary between the solid–liquid PCM and the condenser to prevent the direct contact between the phase change material and the condenser tubes, this method is also known as the intermediate boiling fluid (IBF) method. The IBF method has been shown to significantly increase the solidification rate (2 orders of magnitude). In this study, the... 

    Prediction of solidification behaviour of weld pool through modelling of heat transfer and fluid flow during gas tungsten arc welding of commercial pure aluminium

    , Article Materials Science and Technology ; Volume 24, Issue 12 , 2008 , Pages 1427-1432 ; 02670836 (ISSN) Farzadi, A ; Serajzadeh, S ; Kokabi, A. H ; Sharif University of Technology
    2008
    Abstract
    A mathematical model is developed to assess the solidification behaviour of the weld pools. To do so, during gas tungsten arc welding of commercial pure aluminium, equations of conversation of mass, energy and momentum are numerically solved considering three-dimensional steady state heat transfer and fluid flow conditions. The weld pool geometry, weld thermal cycles and various solidification parameters are calculated using temperature and velocity fields acquiring from the utilised model. The solidification behaviour of the weld pool at the weld centreline and the fusion line is then studied using the solidification parameters including temperature gradient G, solidification rate R and the...