Loading...
Search for: solution-time
0.004 seconds

    A proof for non existence of periodic solutions in time invariant fractional order systems

    , Article Automatica ; Volume 45, Issue 8 , 2009 , Pages 1886-1890 ; 00051098 (ISSN) Tavazoei, M. S ; Haeri, M ; Sharif University of Technology
    2009
    Abstract
    The aim of this note is to highlight one of the basic differences between fractional order and integer order systems. It is analytically shown that a time invariant fractional order system contrary to its integer order counterpart cannot generate exactly periodic signals. As a result, a limit cycle cannot be expected in the solution of these systems. Our investigation is based on Caputo's definition of the fractional order derivative and includes both the commensurate or incommensurate fractional order systems. © 2009 Elsevier Ltd. All rights reserved  

    Simulation of chatter vibrations in reaming

    , Article ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007, 11 November 2007 through 15 November 2007 ; Volume 3 , 2007 , Pages 441-447 ; 0791842975 (ISBN) Sajjadi, M ; Movahhedy, M. R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2007
    Abstract
    A time domain approach is used to study the cutting conditions in reaming process that leads the system to regenerative chatter vibrations. The dynamic analysis of the system includes inertia of the tool, centripetal and Coriolis terms, damping and the first mode bending of reamer. A model of cutting forces proportional to chip cross sectional area and process damping proportional to cutting speed is considered. Numerical simulation based on the Euler integration scheme is carried out to obtain time domain solution of the equation. Despite linearization in force modelling, the model is nonlinear due to the change in the tool engagement area. Another nonlinearity included in the model jumping... 

    A new approach to solve MDVRP in lower computation time

    , Article 29th Iranian Conference on Electrical Engineering, ICEE 2021, 18 May 2021 through 20 May 2021 ; 2021 , Pages 632-636 ; 9781665433655 (ISBN) Rahimi Baghbadorani, R ; Zajkani, M. A ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Vehicle routing problem is one of the complex and NP-hard problems, which plays a crucial role in this hectic world regarding people's lifestyle. Nowadays, many people provide their stuff online, so a logistic problem has been outstripped for companies to reduce their transportation costs. In this article, a novel approach has been introduced, which can solve the multi-depot vehicle routing problem in shorter time. By using clustering and decomposing the main problem into smaller ones, solution time has been dropped dramatically. In addition, this approach obtains a reasonable cost, which can be considered as fuel consumption, distance, or so forth. This method could reduce the solution time... 

    An efficient, non-regularized solution algorithm for a finite strain shape memory alloy constitutive model

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 4 , 2010 , Pages 131-138 ; 9780791849187 (ISBN) Arghavani, J ; Auricchio, F ; Naghdabadi, R ; Reali, A ; Sohrabpour, S ; Sharif University of Technology
    2010
    Abstract
    In this paper we investigate a three-dimensional finite-strain phenomenological constitutive model and propose an efficient solution algorithm by properly defining the variables and by avoiding extensively-used regularization schemes which increase the solution time. We define a nucleation-completion criterion and modify the regularized solution algorithm. Implementation of the proposed integration algorithm within a user-defined subroutine UMAT in the commercial nonlinear finite element software ABAQUS has made possible the solution of boundary value problems. The obtained results show the efficiency of the proposed solution algorithm and confirm the improved efficiency (in terms of... 

    U-shaped energy loss curves utilization for distributed generation optimization in distribution networks

    , Article Journal of Zhejiang University: Science C ; Volume 14, Issue 11 , 2013 , Pages 887-898 ; 18691951 (ISSN) Ebrahimi, R ; Ehsan, M ; Nouri, H ; Sharif University of Technology
    2013
    Abstract
    We propose novel techniques to find the optimal location, size, and power factor of distributed generation (DG) to achieve the maximum loss reduction for distribution networks. Determining the optimal DG location and size is achieved simultaneously using the energy loss curves technique for a pre-selected power factor that gives the best DG operation. Based on the network's total load demand, four DG sizes are selected. They are used to form energy loss curves for each bus and then for determining the optimal DG options. The study shows that by defining the energy loss minimization as the objective function, the time-varying load demand significantly affects the sizing of DG resources in... 

    Continuous-time state-space unsteady aerodynamic modeling based on boundary element method

    , Article Engineering Analysis with Boundary Elements ; Volume 36, Issue 5 , 2012 , Pages 789-798 ; 09557997 (ISSN) Mohammadi Amin, M ; Ghadiri, B ; Abdalla, M. M ; Haddadpour, H ; De Breuker, R ; Sharif University of Technology
    2012
    Abstract
    In this paper a continuous-time state-space aerodynamic model is developed based on the boundary element method. Boundary integral equations governing the unsteady potential flow around lifting bodies are presented and modified for thin wing configurations. Next, the BEM discretized problem of unsteady flow around flat wing equivalent to the original geometry is recast into the standard form of a continuous-time state-space model considering some auxiliary assumptions. The system inputs are time derivative of the instantaneous effective angle of attack and thickness/camber correction terms while the outputs are unsteady aerodynamic coefficients. To validate the model, its predictions for... 

    Effects of salinity, ion type, and aging time on the crude oil-brine interfacial properties under gravity condition

    , Article Journal of Petroleum Science and Engineering ; Volume 195 , December , 2020 Khajepour, H ; Akhlaghi Amiri, H. A ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, the impacts of salinity, ion type, and aging process were investigated on coalescence and spreading of crude oil interfaces (including an oil droplet and an oil film) under gravity, through drop rest time measurement techniques, aided by an image analysis system. Three different salt solutions of NaCl, Na2SO4, and MgCl2 were studied at different ionic strengths, ranged from 1% to 150% of Persian Gulf seawater ionic strength. According to the results, aging the oil droplet in the brine increased the interfacial rigidity. Addition of a gas phase - by thinning the surface oil film - almost doubled both rest time and spreading time values. In the aged mode, the presence of salt in...