Loading...
Search for: sonochemical-method
0.005 seconds

    Enhancing the formation of tetragonal phase in perovskite nanocrystals using an ultrasound assisted wet chemical method

    , Article Ultrasonics Sonochemistry ; Volume 33 , 2016 , Pages 141-149 ; 13504177 (ISSN) Moghtada, A ; Ashiri, R ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Synthesis of highly-pure tetragonal perovskite nanocrystals is the key challenge facing the development of new electronic devices. Our results have indicated that ultrasonication is able in enhancing the formation of tetragonal phase in perovskite nanocrystals. In the current research, multicationic oxide perovskite (ATiO3; A: Ba, Sr, Ba0.6Sr0.4) nanopowders are synthesized successfully by a general methodology without a calcination step. The method is able to synthesize high-purity nanoscale ATiO3 (BaTiO3, SrTiO3, Ba0.6Sr0.4TiO3) with tetragonal symmetry at a lower temperature and in a shorter time span in contrast to the literature. To reach an in-depth understanding of the scientific... 

    Facile synthesis of NiTiO3 yellow nano-pigments with enhanced solar radiation reflection efficiency by an innovative one-step method at low temperature

    , Article Dyes and Pigments ; Volume 123 , 2015 , Pages 92-99 ; 01437208 (ISSN) Moghtada, A ; Shahrouzianfar, A ; Ashiri, R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract Inorganic NiTiO3 nano-pigments have received recent attentions as possible candidates for cool pigment materials to be used in building roofs and facades. In this paper, we have attempted to develop an innovative low temperature (50 °C) synthesis pathway for obtaining NiTiO3 nanocrystals based on an ultrasound-assisted wet chemical processing method. The crystallite size, average particle size and band gap are found to be 11 nm, in the range of 10-20 nm and 3.72 eV, respectively. Ultraviolet-visible (UV-vis) reflectance spectra show that NiTiO3 nanoparticles have a high reflection peak at ∼580 nm, which is associated with the brilliant yellow color... 

    Sonochemical synthesis and measurement of optical properties of zinc sulfide quantum dots

    , Article Chemical Engineering Journal ; Volume 209 , 2012 , Pages 113-117 ; 13858947 (ISSN) Goharshadi, E. K ; Sajjadi, S. H ; Mehrkhah, R ; Nancarrow, P ; Sharif University of Technology
    2012
    Abstract
    A facile sonochemical method has been developed to prepare very small zinc sulfide nanoparticles (ZnS NPs) of extremely small size about 1. nm in diameter using a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the NPs were determined in depth with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) analysis, and UV-vis absorption spectroscopy. The energy band gap measurements of ZnS NPs were calculated by UV-vis absorption... 

    Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method

    , Article Ultrasonics Sonochemistry ; Volume 19, Issue 4 , 2012 , Pages 841-845 ; 13504177 (ISSN) Mohseni Meybodi, S ; Hosseini, S. A ; Rezaee, M ; Sadrnezhaad, S. K ; Mohammadyani, D ; Sharif University of Technology
    2012
    Abstract
    A sonochemistry-based synthesis method was used to produce nanocrystalline nickel oxide powder with ∼20 nm average crystallite diameter from Ni(OH)2 precursor. Ultrasound waves were applied to the primary solution to intensify the Ni(OH)2 precipitation. Dried precipitates were calcined at 320 °C to form nanocrystalline NiO particles. The morphology of the produced powder was characterized by transmission electron microscopy. Using sonochemical waves resulted in lowering of the size of the nickel oxide crystallites. FT-IR spectroscopy and X-ray diffraction revealed high purity well-crystallized structure of the synthesized powder. Photoluminescence spectroscopy confirmed production of a wide... 

    Catalytic performance of Mn3O4 and Co 3O4 nanocrystals prepared by sonochemical method in epoxidation of styrene and cyclooctene

    , Article Applied Surface Science ; Volume 256, Issue 22 , 2010 , Pages 6678-6682 ; 01694332 (ISSN) Askarinejad, A ; Bagherzadeh, M ; Morsali, A ; Sharif University of Technology
    2010
    Abstract
    A simple sonochemical method was developed to synthesis uniform sphere-like Co3O4 and Mn3O4 nanocrystals. Epoxidation of styrene and cyclooctene by anhydrous tert-butyl hydroperoxide over the prepared Co3O4 and Mn3O4 nanocatalysts was investigated. The results of conversion activity were compared with bulk Co3O4 and Mn3O4. Under optimized reaction conditions, the nanocatalysts showed a superior catalytic performance as compared to the bulk catalysts. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET surface area, were used to characterize and investigate the nanocatalysts  

    Low-temperature ultrasound synthesis of nanocrystals CoTiO3 without a calcination step: Effect of ultrasonic waves on formation of the crystal growth mechanism

    , Article Advanced Powder Technology ; Volume 28, Issue 4 , 2017 , Pages 1109-1117 ; 09218831 (ISSN) Moghtada, A ; Shahrouzianfar, A ; Ashiri, R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    CoTiO3 nanocrystallites with an average diameter of 50 nm were synthesized successfully by the sonochemical method without a calcination step and using C10H16N2O8 (EDTA) as the chelating agent. To reach an in-depth understanding of the scientific basis of the proposed process, an in-detail analysis was carried out for characterization of nanoscale CoTiO3 particles via XRD, FTIR, FE-SEM and UV–vis diffuse reflectance spectroscopy (DRS). The crystallite size, average particle size and band gap are found to be 10.7 nm, in the range of 50 nm and 4.64 eV, respectively. The mechanism and the formation process of CoTiO3 in the sonochemical process were proposed. It was found that nanocrystals were... 

    Sonochemical fabrication and catalytic properties of α -Fe2O3 nanoparticles

    , Article Journal of Experimental Nanoscience ; Volume 6, Issue 3 , 2011 , Pages 217-225 ; 17458080 (ISSN) Askarinejad, A ; Bagherzadeh, M ; Morsali, A ; Sharif University of Technology
    Abstract
    In this study, α -Fe2O3 (hematite) nanoparticles were synthesised by a sonochemical method. The influence of different factors such as chemical composition of the precursors, atmosphere of the reactions and type of the sonicator on the chemical formula, crystallinity, morphology and size of the obtained products were investigated. Powder X-ray diffraction, scanning electron microscopy and IR spectroscopy, were used to characterise the nanostructures. The catalytic tests were performed in the reaction of methyl phenyl sulphide oxidation. The results exhibit the good catalytic performance of the as-prepared α -Fe2O3 nanoparticles  

    Facile synthesis of NiTiO3 yellow nano-pigments with enhanced solar radiation reflection efficiency by an innovative one-step method at low temperature

    , Article Dyes and Pigments ; Volume 139 , 2017 , Pages 388-396 ; 01437208 (ISSN) Moghtada, A ; Shahrouzianfar, A ; Ashiri, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Inorganic NiTiO3 nano-pigments have received recent attentions as possible candidates for cool materials to be used in building roofs and facades. In this paper, we have attempted to develop an innovative low temperature pathway (processed at 50 °C) for obtaining NiTiO3 nanocrystals by an ultrasound-assisted wet chemical processing method. Different characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS) were used in order to characterize the size, morphology and optical responses of the obtained NiTiO3...