Loading...
Search for: space-rendezvous
0.004 seconds

    Covariance-based multiple-impulse rendezvous design

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 55, Issue 5 , 2019 , Pages 2128-2137 ; 00189251 (ISSN) Shakouri, A ; Kiani, M ; Pourtakdoust, S. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    A novel trajectory design methodology is proposed in the current work to minimize the state uncertainty in the crucial mission of spacecraft rendezvous. The trajectory is shaped under constraints utilizing a multiple-impulse approach. State uncertainty is characterized in terms of covariance, and the impulse time as the only effective parameter in uncertainty propagation is selected to minimize the trace of the covariance matrix. Furthermore, the impulse location is also adopted as the other design parameter to satisfy various translational constraints of the space mission. Efficiency and viability of the proposed idea have been investigated through some scenarios that include constraints on... 

    Robust composite nonlinear feedback control for spacecraft rendezvous systems under parameter uncertainty, external disturbance, and input saturation

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; 2018 ; 09544100 (ISSN) Namdari, H ; Allahverdizadeh, F ; Sharifi, A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    This paper presents a new robust composite nonlinear feedback control law for accurate, smooth, and fast regulation in the presence of parameter uncertainties, external disturbances, and input saturation for a class of spacecraft rendezvous systems. The novel proposed method consists of the original composite nonlinear feedback part for good transient performance plus a nonlinear disturbance rejection part for reducing the steady-state error stemming from variable disturbances and simultaneously producing feasible control input. The nonlinear disturbance rejection relies on sliding-mode observer for disturbance estimation. Closed-loop system stability has been proved with the Lyapunov... 

    Robust composite nonlinear feedback control for spacecraft rendezvous systems under parameter uncertainty, external disturbance, and input saturation

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 234, Issue 2 , 2020 , Pages 143-155 Namdari, H ; Allahverdizadeh, F ; Sharifi, A ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    This paper presents a new robust composite nonlinear feedback control law for accurate, smooth, and fast regulation in the presence of parameter uncertainties, external disturbances, and input saturation for a class of spacecraft rendezvous systems. The novel proposed method consists of the original composite nonlinear feedback part for good transient performance plus a nonlinear disturbance rejection part for reducing the steady-state error stemming from variable disturbances and simultaneously producing feasible control input. The nonlinear disturbance rejection relies on sliding-mode observer for disturbance estimation. Closed-loop system stability has been proved with the Lyapunov... 

    Optimal coupled spacecraft rendezvous and docking using multi-objective optimization

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 5 , July , 2010 , Pages 299-309 ; 9780791849194 (ISBN) Moradi, R ; Pourtakdoust, S. H ; Kamyar, R ; ASME Turkey Section ; Sharif University of Technology
    2010
    Abstract
    Spacecraft rendezvous and docking are two processes in which a chaser pursues and meets a leader spacecraft in order to perform several mission based tasks. Although in some preliminary design analysis, these two operations may be pursued independently there could be circumstances in which the spacecraft trajectory and attitudes are coupled and interdependent. The present study is based on the presumption that the often independent translational and rotational motions of the spacecraft are coupled as a result of thrust misalignment. So the thrusters not only contribute to the rendezvous translational motion, but also affect the docking reorientation maneuver through their disturbing effects.... 

    Closed-loop powered-coast-powered predictive guidance for spacecraft rendezvous with non-singular terminal sliding mode steering

    , Article Acta Astronautica ; Volume 166 , 2020 , Pages 507-523 Kasaeian, S. A ; Ebrahimi, M ; Assadian, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The present study aims to present a guidance algorithm based on the relative motion prediction for orbital rendezvous, in which a coast phase is allowed between two powered phases. In both powered phases, the solution of the Hill-Clohessy-Wiltshire equations is used to find the required state variables at each time instant. To track the required trajectory and compensate for any orbital perturbations and uncertainties, a non-singular terminal sliding mode method is utilized as the steering law. Then, the finite time convergence of the state variables is mathematically proved. In addition, the starting time of the second powered phase is adapted to perturbations and uncertainties by another...