Loading...
Search for: specific-heat
0.006 seconds
Total 51 records

    On the isobaric specific heat capacity of natural gas

    , Article Fluid Phase Equilibria ; Vol. 384, issue , 2014 , pp. 16-24 ; ISSN: 03783812 Jarrahian, A ; Karami, H. R ; Heidaryan, E ; Sharif University of Technology
    Abstract
    A colorimeter equipped with a gas booster in conjunction with a PVT cell was used to measure the heat capacity of natural gas with different amounts of impurities. Based on new experimental and literature data, a general investigation of the isobaric specific heat capacity was carried out using the Jarrahian-Heidaryan equation of state (J-H-EOS). A model was obtained that is valid in wide ranges of pressures (0.1-40. MPa) and temperatures (250-414. K). The arithmetic average of the model's absolute error is acceptable in engineering calculations and has superiority over other methods in its class  

    Modelling the work-roll temperature variation at unsteady state condition

    , Article Modelling and Simulation in Materials Science and Engineering ; Volume 11, Issue 2 , 2003 , Pages 179-194 ; 09650393 (ISSN) Serajzadeh, S ; Mucciardi, F ; Sharif University of Technology
    2003
    Abstract
    In this paper, the unsteady state heat transfer equations with time dependent boundary conditions are coupled with a two-dimensional finite element method to predict the work-roll temperature distribution during the continuous hot slab rolling process. To achieve an accurate temperature field, the effects of various factors including the thermal relationship of the work-roll and the metal slab, the idling work-roll revolutions, the rolling speed, the slab/roll interfacial heat transfer coefficient, and the magnitude of the thickness reduction of the slab at each deformation pass are taken into account. Comparisons between the predicted and published experimental results are used to... 

    Lattice heat capacity of mesoscopic nanostructures

    , Article Journal of Physics: Conference Series, 5 July 2010 through 10 July 2010, Dubna ; Volume 248 , 2010 ; 17426588 (ISSN) Gharekhanlou, B ; Khorasani, S ; Vafai, A ; Sharif University of Technology
    2010
    Abstract
    We present a rigorous full quantum mechanical model for the lattice heat capacity of mesoscopic nanostructures in various dimensions. Model can be applied to arbitrary nanostructures with known vibrational spectrum in zero, one, two, or three dimensions. The limiting case of infinitely sized multi-dimensional materials are also found, which are in agreement with well-known results. As examples, we obtain the heat capacity of fullerenes  

    Modeling and analysis of AN ultra light slow flyer with variable shape control surfaces using shape memory alloy actuators

    , Article Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis - 2004, Manchester, 19 July 2004 through 22 July 2004 ; Volume 2 , 2004 , Pages 153-162 ; 0791841731 (ISBN); 9780791841730 (ISBN) Alasty, A ; Alemohamad, S. H ; Khiabani, R. H ; Khalighi, Y ; Sharif University of Technology
    American Society of Mechanical Engineers  2004
    Abstract
    Applying flexible variable shape control surfaces (wing and elevator) structures is a way to increase efficiency and maneuverability of the planes, which is recently under research. In this paper, modeling of the flight of an unmanned ultra light plane is discussed. The modeling is done based on a real ultra light plane presented recently. To increase maneuverability of the plane, flexible variable shape structures are designed for the wing and the elevator. In design procedure, having an ultra light plane is considered. The elevator and the wing are used as control surfaces for longitudinal and lateral maneuvers respectively. Shape memory alloys (SMA) are used for reshaping the flexible... 

    Comparison of the experimental behavior of a shape memory alloy in compression and tension

    , Article 2003 ASME International Mechanical Engineering Congress, Washington, DC., 15 November 2003 through 21 November 2003 ; Volume 68 , 2003 , Pages 471-478 ; 07334230 (ISSN) Hesse, T ; Ghorashi, M ; Inman, D. J ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2003
    Abstract
    The concept of Shape Memory Alloy (SMA) has been a subject of extensive research in the recent few years. In many SMA applications, wire elements have been used in order to control structural specifications like shape and stiffness. Since a wire can only be subjected to tensile forces, the available theoretical models for SMA discuss only the tensile loading. The present paper is an endeavor to overcome this shortcoming. It gives experimental results for tension and compression tests on specimens (having different geometries) made of an identical shape memory alloy. The corresponding results are compared with each other. Using stress-strain diagrams, several important material properties are... 

    Experimental study of parameters affecting the nusselt number of generator rotor and stator

    , Article Heat Transfer Engineering ; Volume 31, Issue 3 , 2010 , Pages 243-249 ; 01457632 (ISSN) Mahdavifar, S. J. E ; Nili Ahmadabadi, M ; Hashemi, A ; Sharif University of Technology
    2010
    Abstract
    In this research, the parameters affecting the Nusselt number of a generator rotor and stator under varying heat transfer rate are experimentally studied. In spite of the stator having no grooves, the rotor has four large triangular grooves. The temperature and then heat transfer rate of the rotor and stator are experimentally measured in three longitudinal and two angular positions. First, the effect of axial Reynolds number and rotor rotational speed on the rotor and stator Nusselt number with constant heat transfer rate ratio is studied. The range of the axial Reynolds number and rotational speed used is from 4000 to 30,000 and from 300 to 1500 rpm, respectively. Next, the effect of... 

    Thermal performance enhancement of an evacuated tube solar collector using graphene nanoplatelets nanofluid

    , Article Journal of Cleaner Production ; Volume 162 , 2017 , Pages 121-129 ; 09596526 (ISSN) Iranmanesh, S ; Ong, H. C ; Ang, B. C ; Sadeghinezhad, E ; Esmaeilzadeh, A ; Mehrali, M ; Sharif University of Technology
    Abstract
    In this study, the effect of graphene nanoplatelets (GNP)/distilled water nanofluid on the thermal performance of evacuated tube solar collector (ETSC) water heater was experimentally investigated. The mass percentage of GNP was considered at 0.025, 0.5, 0.075 and 0.1 wt%. The physical and thermal properties of the GNP nanofluids including stability, specific heat capacity, viscosity and thermal conductivity were investigated. The thermal efficiency tests on the solar collector were carried out for varying volumetric flow rate of 0.5, 0.1, and 1.5 L/min while the ASHRAE standard 93–2003 was considered to calculate the efficiency of the collector. The results indicated that the solar... 

    Induced superconductivity in Fermi arcs

    , Article Physical Review B ; Volume 100, Issue 3 , 2019 ; 24699950 (ISSN) Faraei, Z ; Jafari, S. A ; Sharif University of Technology
    American Physical Society  2019
    Abstract
    When the interface of a superconductor (SC) with a Weyl semimetal (WSM) supports Fermi arcs, the chirality blockade eliminates the induction of superconductivity into the bulk of time-reversal symmetry (TRS) breaking WSM. This leaves the Fermi arc states as the only low-energy degrees of freedom in the proximity problem. Therefore the SC|WSM system will be a platform to probe transport properties which involve only the Fermi arcs. With a boundary condition that flips the spin at the boundary, we find a Z2 protected Bogoliubov Fermi contour (BFC) around which the Bogoliubov quasiparticles disperse linearly. The resulting BFC and excitations around it leave a distinct T2 temperature dependence... 

    Improvement of heat-transfer correlations for supercritical methane coolant in rectangular channel

    , Article Applied Thermal Engineering ; Volume 147 , 2019 , Pages 216-230 ; 13594311 (ISSN) Shokri, M ; Ebrahimi, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this article, the conjugate heat transfer of the methane coolant inside a rectangular channel is studied and the related Nusselt correlations are improved. The compressible methane flow enters the cooling channel at supercritical pressure and subcritical temperature. The coolant flow absorbs heat from the heated walls and exits the channel with a supercritical temperature. An in-house solver is developed employing Semi-Implicit Method for Pressure-Linked Equations-Consistent (SIMPLEC) algorithm accompanied by the appropriate thermodynamic and transport property relations for the supercritical conditions of the methane coolant. The solver is validated with the experimental data found in... 

    Dielectric susceptibility and heat capacity of ultra-cold glasses in magnetic fields

    , Article Journal of Physics Condensed Matter ; Volume 19, Issue 46 , 2007 ; 09538984 (ISSN) Akbari, A ; Bodea, D ; Langari, A ; Sharif University of Technology
    Institute of Physics Publishing  2007
    Abstract
    Recent experiments demonstrated unexpected, even intriguing properties of certain glassy materials in magnetic fields at low temperatures. We have studied the magnetic field dependence of the static dielectric susceptibility and the heat capacity of glasses at low temperatures. We present a theory in which we consider the coupling of the tunnelling motion to nuclear quadrupoles in order to evaluate the static dielectric susceptibility. In the limit of weak magnetic field we find the resonant part of the susceptibility increasing like B 2 while for large magnetic field it behaves as 1/B. In the same manner we consider the coupling of the tunnelling motion to nuclear quadrupoles and angular... 

    Effect of model potential of adsorptive bond on the thermodynamic properties of adsorbed CO molecules on Ni(111) surface

    , Article Journal of Physical Chemistry B ; Volume 110, Issue 41 , 2006 , Pages 20435-20444 ; 15206106 (ISSN) Shamkhali, A. N ; Parsafar, G ; Sharif University of Technology
    American Chemical Society  2006
    Abstract
    The effect of anharmonicity on the adsorption of CO molecules on the Ni(111) surface has been investigated. The DFT calculations are used to obtain the effective adsorption potential of the CO molecule on the Ni(111) surface. First, using an appropriate slab model, the geometry of adsorption system corresponding to hep, fcc, bridge, and on-top sites with p(2 × 2) arrangement and coverage of 0.25 ML is optimized by the DFT calculations using a plane wave basis set and ultrasoft pseudopotentials; this gives the hep site as the most stable site with De = 185 kJ/mol, for which the equilibrium distance of CO from the surface and C-O bond length on the surface are found to be 1.31 and 1.192 Å,... 

    LBM investigation of a Cu-water nanofluid over various configurations of pipes in the mixed convection flow

    , Article Heat Transfer ; Volume 50, Issue 2 , August , 2021 , Pages 1056-1072 ; 26884534 (ISSN) Hosseini Abadshapoori, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Increasing the heat capacity of heat exchangers is a crucial need for modern devices. The thermal conductivity of the usual fluids and the Nusselt (Nu) number of flows containing such fluids are two bottlenecks in the way of increasing heat delivery in the heat exchangers. For this reason, nanofluids have been introduced. The effect of utilizing a Cu-water nanofluid as a coolant of two hot pipes in a square cavity is investigated numerically with a two-component lattice Boltzmann method. The volume fraction of nanoparticles is assumed to be constant (0.03) while the Richardson (Ri) number varies from 0.02 to 20. Results show that the effectiveness of nanoparticles is better observed in the... 

    Developing an efficient multigrid strategy for solving incompressible flow

    , Article 2004 ASME International Mechanical Engineering Congress and Exposition, IMECE 2004, Anaheim, CA, 13 November 2004 through 19 November 2004 ; Volume 260 , 2004 , Pages 625-634 ; 08888116 (ISSN) Darbandi, M ; Schneider, G. E ; Taheri, A ; Sharif University of Technology
    2004
    Abstract
    In this work, a multigrid acceleration technique is suitably developed for solving the two-dimensional incompressible Navier-Stokes equations using an implicit finite element volume method. In this regard, the solution domain is broken into a huge number of quadrilateral finite elements. The accurate numerical solution of a flow field can be achieved if very fine grid resolutions are utilized. Unfortunately, the standard implicit solvers need more computational time to solve larger size of algebraic set of equations which normally arise if fine grid distributions are used. Past experience has shown that the convergence of classical relaxation schemes perform an initial rapid decrease of... 

    Boundary control of temperature distribution in a rectangular FGM plate

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009, Lake Buena Vista, FL ; Volume 10, Issue PART B , 2010 , Pages 777-783 ; 9780791843833 (ISBN) Rastgoftar, H ; Gharib Shirangi, M ; Eghtesad, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    In this paper an analytical method and a PDE-based solution to control temperature distribution in FGM plates is introduced. For the rectangular FGM plate under consideration, it is assumed that the material properties such as thermal conductivity, density, and specific heat capacity, vary in the width direction (y); and the governing heat conduction equation of the plate is a second-order partial differential equation. Since there has been little control synthesis work for PDE-based systems as compared to the abundance of control design techniques available for ordinary differential equations (ODEs), most of the proposed control approaches for continuous domain rely on discretizing the PDE... 

    Effect of substrate thickness on responsivity of free-membrane bolometric detectors

    , Article IEEE Sensors Journal ; Volume 11, Issue 12 , October , 2011 , Pages 3283-3287 ; 1530437X (ISSN) Hosseini, M ; Kokabi, A ; Moftakharzadeh, A ; Vesaghi, M. A ; Fardmanesh, M ; Sharif University of Technology
    2011
    Abstract
    The effect of substrate thickness and its Debye temperature on the bolometric response of the freestanding-membrane type of superconductor transition-edge detectors is investigated. The investigation is based on the calculation of the variation of the specific heat per unit volume and the heat conductivity using the finite-size scaling method for different Debye temperatures and micron size thickness of substrate. We also calculated the heat capacity and time constant for various materials with Debye temperatures in the range of 600-1400 K. The calculated results are compared with previously reported response values obtained theoretically and experimentally for the thermal-based infrared... 

    On the existence of an analytic solution to the 1-D Ising model with nearest and next-nearest neighbor interactions in the presence of a magnetic field

    , Article Phase Transitions ; Volume 84, Issue 1 , Dec , 2011 , Pages 77-84 ; 01411594 (ISSN) Taherkhani, F ; Daryaei, E ; Abroshan, H ; Akbarzadeh, H ; Parsafar, G ; Fortunelli, A ; Sharif University of Technology
    2011
    Abstract
    To solve the controversy, regarding the existence of an analytic solution to the 1-D Ising model with nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions in the presence of a magnetic field, we apply the transfer matrix method to solve the 1-D Ising model in the presence of a magnetic field, taking both NN and NNN interactions into account. We show that it is possible to write a transfer matrix only if the number of sites is even. Even in such a case, it is impossible to diagonalize the transfer matrix in an analytic form. Therefore, we employ a numerical method to obtain the eigenvalues of the transfer matrix. Moreover, the heat capacity, magnetization, and magnetic... 

    Simple and rapid determination of effective Murphree component efficiencies for operating absorbers, strippers and distillation columns filled with any type of trays

    , Article Separation and Purification Technology ; Volume 139 , January , 2015 , Pages 104-108 ; 13835866 (ISSN) Sadeghifar, H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Estimating efficiency of an operating column has to be distinguished from that of a column being designed. This crucial point has been totally overlooked in the literature. All the methods and models available for predicting the Murphree efficiencies of tray columns have been developed for the design case. They generate their own mass and heat transfer rates and empirical parameters rather than produce true transfer rates by using operating column (realistic) data, especially the specifications of outlet streams. In addition, most of these methods are limited in application and insufficient in accuracy, especially if applied outside the range of conditions under which they were formulated.... 

    Simulation of thermal profile in a single pellet during drying process with CFD method

    , Article Proceedings of the 24th International Mining Congress of Turkey, IMCET 2015, 14 April 2015 through 17 April 2015 ; 2015 , Pages 797-803 ; 9786050107050 (ISBN) Gitiara, A ; Namehi, A ; Vali, H ; Shahrokhshahi, H. R ; Soltani, H ; Alamdari, E. K ; Cheraghi, A ; Karadeniz, M ; Gulsun Kilic, M ; Torun Bilgic, E ; Basarir, H ; Onel, O ; Sharif University of Technology
    TMMOB Maden Muhendisleri Odasi  2015
    Abstract
    Green iron oxide pellets are indurated with thermal treatment in pelletizing plant to achieve sufficient mechanical properties and to be used in iron-steel industry. In the first stage, the pellets are dried with hot air coming from the firing unit. High heat transfer makes the evaporation rate exceeding the outgoing steam rate from the pellets and as a result, increasing the inner pressure of the pellets and fragment. On the other hand, low heat transfer causes low production rate. Using the related equations and considering the pellets' moisture and porosity and applying the pellets' condition on parameters such as specific heat capacity and heat conductivity, an acceptable standard is... 

    Smooth modeling of solidification based on the latent heat evolution approach

    , Article International Journal of Advanced Manufacturing Technology ; Volume 88, Issue 9-12 , 2017 , Pages 3041-3052 ; 02683768 (ISSN) Tavakoli, R ; Sharif University of Technology
    Springer London  2017
    Abstract
    The regularity problem of heat conduction equation corresponding to modeling of solidification based on the latent heat evolution approach is considered in the present study. It is shown that the corresponding PDE is actually semi-smooth, an issue that has not been taken into account explicitly in the related literature. A general smoothing (regularization) strategy is introduced to solve this problem. More specifically, the smoothed version of the effective heat capacity method is presented in this work. The presented approach is applied to model the quasi steady-state heat transfer problem in the continuous casting process. Numerical experiments demonstrate the success of the presented... 

    Investigation of the effect of adding nano-encapsulated phase change material to water in natural convection inside a rectangular cavity

    , Article Journal of Energy Storage ; Volume 40 , 2021 ; 2352152X (ISSN) Golab, E ; Goudarzi, S ; Kazemi Varnamkhasti, H ; Amigh, H ; Ghaemi, F ; Baleanu, D ; Karimipour, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The present simulation aims to investigate adding NEPCM nanoparticles to water in the natural convection inside a cavity by using FVM method and SIMPLE algorithm. Nano-encapsulated phase change material (NEPCM) consists of a shell and core with phase change property. The NEPCM particles in base fluid have the ability to transfer heat by absorbing and dissipating heat in the liquid-solid phase change state. In this study, the energy wall phenomenon due to the phase change of NEPCM core has appeared that the whose energy transfer strength is proportional to the latent heat of NEPCM core and the thickness of the energy wall. Moreover, the relationship between the energy wall and the heat...