Loading...
Search for: spectral-differences
0.008 seconds

    A high-order accurate unstructured spectral difference lattice Boltzmann method for computing inviscid and viscous compressible flows

    , Article Aerospace Science and Technology ; Volume 98 , 2020 Hejranfar, K ; Ghaffarian, A ; Sharif University of Technology
    Elsevier Masson SAS  2020
    Abstract
    In the present work, the spectral difference lattice Boltzmann method (SDLBM) is implemented on unstructured meshes for the solution methodology to be capable of accurately simulating the compressible flows over complex geometries. Both the inviscid and viscous compressible flows are computed by applying the unstructured SDLBM. The compressible form of the discrete Boltzmann–BGK equation with the Watari model is considered and the solution of the resulting system of equations is obtained by applying the spectral difference method on arbitrary quadrilateral meshes. The accuracy and robustness of the unstructured SDLBM for simulating the compressible flows are demonstrated by simulating four... 

    Numerical Simulation of Compressible Flow Using Spectral Difference Method with Quadrilateral Elements

    , M.Sc. Thesis Sharif University of Technology Kianvashrad, Nadia (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present work, the numerical simulation of 2D inviscid compressible flows by using the spectral difference (SD) method on quadrilateral meshes is performed. The SD method combines the most desirable features of structured and unstructured grid methods to attain computational efficiency and geometric flexibility. Similar to the discontinuous Galerkin (DG) and spectral volume (SV) methods, the SD scheme utilizes the concept of discontinuous and high-order local representations to achieve conservation and high accuracy. The SD method is based on the finite-difference formulation and thus its formulation is simpler than the DG and SV methods ... 

    Numerical Simulation of Compressible Magnetohydrodynamic Flow Using Spectral Difference Method on Quadrilateral Grids

    , M.Sc. Thesis Sharif University of Technology Kafian, Hesam (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present work, the numerical solution of 2D inviscid compressible Magneto-hydrodynamic flow is performed by using the spectral difference (SD) method on quadrilateral grids. In this numerical method, similar to the discontinuous Galerkin (DG) and spectral volume (SV) methods, the concept of the discontinuous and high-order local representations is used to achieve conservation property and high-order accuracy. In the SD method, the test function or the surface integral is not involved and thus it has a simpler formulation than the DG and SV methods. In this numerical method, two sets of structured points, namely unknown points and flux points, are defined in each cell to support the... 

    Numerical Simulation of 2D Inviscid Compressible Magnetohydrodynamic Flows by Spectal Difference Method

    , M.Sc. Thesis Sharif University of Technology Kharratyan, Mahdi (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the numerical solution of 2D inviscid compressible ideal magnetohydrodynamic (MHD) flows by using the spectral difference (SD) method on unstructured meshes is performed. The SD method combines the most desirable features of structured and unstructured grid methods to have computational efficiency and geometric flexibility to accurately compute flow over complex geometries. In the SD method, two sets of structured points, namely “unknown points” and “flux points”, are defined in each cell to support the reconstruction of given order of accuracy. The differential form of the conservation laws is satisfied at nodal unknown points while the flux derivatives expressed in... 

    Numerical Solution of 2D Incompressible Flow Using Spectral Difference Method

    , M.Sc. Thesis Sharif University of Technology Baradaran Kazemian, Behzad (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, an accurate numerical solution of the two-dimensional incompressible viscous flows is performed by using the spectral difference method on structured grids. The system of equations to be solved here is the preconditioned incompressible Navier-Stokes equations in the primitive variable formulation with the artificial compressibility approach. In the spectral difference method, two sets of the structured points, namely, “solution points” and “flux points” are defined in each cell for supporting the reconstruction of desirable order of accuracy. Here, the formulation of the spectral difference method is derived and the representative form of the solution and flux points for... 

    An implicit dual-time stepping spectral difference lattice Boltzmann method for simulation of viscous compressible flows on structured meshes

    , Article Meccanica ; Volume 54, Issue 10 , 2019 , Pages 1561-1581 ; 00256455 (ISSN) Ghaffarian, A ; Hejranfar, K ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this work, the spectral difference lattice Boltzmann method (SDLBM) is extended and applied for accurately computing two-dimensional viscous compressible flows on structured meshes. Here, the compressible form of the discrete Boltzmann-BGK equation with the Watari model is considered and the numerical solution of the resulting LB equation is obtained by using the spectral difference method. The main benefit of the use of the LB method in simulating compressible flows is that a same formulation can be applied to compute the inviscid and viscous portions of the flowfield. Note that the LB formulation for simulating the viscous flows is the same as that used for the inviscid ones, however,... 

    Development of Spectral Difference Lattice Boltzmann Method for Solution of Compressible Flows

    , Ph.D. Dissertation Sharif University of Technology Ghaffarian, Ali (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this research, the spectral difference lattice Boltzmann method (SDLBM) is developed and applied for an accurate simulation of two-dimensional (2D) inviscid and viscous compressible flows on the structured and unstructured meshes. The compressible form of the discrete Boltzmann-BGK equation is used in which multiple particle speeds have to be employed to correctly model the compressibility in a thermal fluid. Here, the 2D compressible Lattice Boltzmann (LB) model proposed by Watari is used. The spectral difference (SD) method is implemented for the solution of the LB equation in which the particle distribution functions are stored at the solution points while the fluxes are calculated...