Search for: spectro-photometric-method
0.006 seconds

    Optimization of a vanillin assay for determination of anthocyanins using D-optimal design

    , Article Analytical Methods ; Volume 4, Issue 3 , Feb , 2012 , Pages 824-829 ; 17599660 (ISSN) Khoshayand, M. R ; Roohi, T ; Moghaddam, G ; Khoshayand, F ; Shahbazikhah, P ; Oveisi, M. R ; Hajimahmoodi, M ; Sharif University of Technology
    The vanillin assay is a spectrophotometric method for anthocyanin determination that is simple, quick and inexpensive. The method is preferred because of its high sensitivity, specificity and simplicity; however, the results of this test are influenced by several factors. Hence, a D-optimal experimental design approach was investigated to simultaneously, without loss of information, optimize five factors that influence the vanillin assay: acid normality, vanillin concentration, temperature, time and acid type. Further optimization with a D-optimal design and response surface analysis (RSM) showed that a second-order polynomial model fit the experimental data appropriately. The optimum... 

    A second-order advantage achieved with the aid of gold nanoparticle catalytic activity. Determination of nitrophenol isomers in binary mixtures

    , Article Analytical Methods ; Vol. 6, issue. 9 , Feb , 2014 , pp. 3056-3064 ; ISSN: 17599660 Rabbani, F ; Abdollahi, H ; Hormozi-Nezhad, M. R ; Sharif University of Technology
    A novel, simple and rapid spectrophotometric method for the determination of nitrophenol (NP) isomer mixtures based on the catalytic activity of gold nanoparticles is described. Gold nanoparticle (∼13 nm) solution was used to catalyze the reduction of NP isomers to aminophenols with an excess amount of NaBH4. The second-order data were obtained by spectrophotometrically monitoring the reduction process of NP isomers. So, multivariate curve resolution optimized by alternative least squares (MCR-ALS) was used to analyze such data. MCR-ALS, an appropriate second-order method, can exploit the so-called 'second order advantage' (the ability to determine in the presence of uncalibrated... 

    Synthesis and characterization of a novel (salep phosphate)-based hydrogel as a carrier matrix for fertilizer release

    , Article Reactive and Functional Polymers ; Volume 72, Issue 10 , 2012 , Pages 667-672 ; 13815148 (ISSN) Pourjavadi, A ; Doulabi, M ; Soleyman, R ; Sharif, S ; Eghtesadi, S. A ; Sharif University of Technology
    Elsevier  2012
    Salep phosphate modified biopolymers with different phosphate contents were prepared via reacting salep (a multi-component polysaccharide obtained from dried tubers of certain natural terrestrial orchids) with a solution of primary and secondary sodium phosphates under basic conditions in a semidry process. Structural characterization of salep phosphates were carried out by 31P NMR, FT-IR spectra and TGA curves. Determination of the phosphate content in samples was done by a standard spectrophotometric method. Then, novel (salep phosphate)-based hydrogels were synthesized by graft copolymerization of acrylic acid (AA) monomer onto salep phosphate backbones. Effect of the phosphate contents... 

    Comparative studies on Ag3PO4/BiPO4-metal-organic framework-graphene-based nanocomposites for photocatalysis application

    , Article Applied Surface Science ; Volume 351 , October , 2015 , Pages 216-224 ; 01694332 (ISSN) Mohaghegh, N ; Tasviri, M ; Rahimi, E ; Gholami, M. R ; Sharif University of Technology
    Elsevier  2015
    For the first time, we report novel Ag3PO4/BiPO4 (AB)-graphene-based photocatalysts. The fabricated nanocomposites were characterized by various techniques. The photocatalytic properties of the prepared catalysts were evaluated by the photodegradation of Atrazine herbicide under both visible and UV light irradiation. Atrazine concentration was determined using the spectrophotometric method according to the Konig's reaction by monitoring the absorbance at 470 nm wavelength during the photodegradation process. Both degradation rate and efficiency using graphene (GR)-based nanocomposites are found to be much better than using pure AB. Atrazine photodegradation displayed that the AB supporting... 

    Design of a pseudo stir bar sorptive extraction using graphenized pencil lead as the base of the molecularly imprinted polymer for extraction of nabumetone

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 238 , 2020 Afsharipour, R ; Dadfarnia, S ; Haji Shabani, A. M ; Kazemi, E ; Sharif University of Technology
    Elsevier B.V  2020
    Molecularly imprinted polymer (MIP) was synthesized through the coprecipitation method on the graphene oxide anchored pencil lead as a substrate for the first time and applied as an efficient sorbent for pseudo stir bar sorptive extraction of nabumetone. The extracted analyte was determined by a novel spectrophotometric method based on the aggregation of silicate sol-gel stabilized silver nanoparticles in the presence of the analyte. The synthesized polymer was characterized using Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Optimization of important parameters affecting the extraction efficiency was done using central composite design whereas the... 

    Development of a novel method for determination of mercury based on its inhibitory effect on horseradish peroxidase activity followed by monitoring the surface plasmon resonance peak of gold nanoparticles

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 153 , 2016 , Pages 709-713 ; 13861425 (ISSN) Khodaveisi, J ; Haji Shabani, A. M ; Dadfarnia, S ; Rohani Moghadam, M. R ; Hormozi Nezhad, M. R ; Sharif University of Technology
    A highly sensitive and simple indirect spectrophotometric method has been developed for the determination of trace amounts of inorganic mercury (Hg2 +) in aqueous media. The method is based on the inhibitory effect of Hg2 + on the activity of horseradish peroxidase (HRP) in the oxidation of ascorbic acid by hydrogen peroxide followed by the reduction of Au3 + to Au-NPs by unreacted ascorbic acid and the measurement of the absorbance of localized surface plasmon resonance (LSPR) peak of gold nanoparticles (at 530 nm) which is directly proportional to the concentration of Hg2 +. Under the optimum conditions, the calibration curve was linear in the concentration range of 1-220 ng mL- 1. Limits... 

    Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus

    , Article Bioelectrochemistry ; Volume 123 , 2018 , Pages 70-76 ; 15675394 (ISSN) Ranjbar, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Since that pathogenic bacteria are major threats to human health, this paper describes the fabrication of an effective and durable sensing platform based on gold nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite (AuNPs/CNPs/CNFs) at the surface of glassy carbon electrode for sensitive and selective detection of Staphylococcus aureus (S. aureus). The AuNPs/CNPs/CNFs nanocomposite with the high surface area, excellent conductivity, and good biocompatibility was used for self-assembled of the thiolated specific S. aureus aptamer as a sensing element. The surface morphology of AuNPs/CNPs/CNFs nanocomposite was characterized with field emission scanning electron microscopy...