Loading...
Search for: spherical-coordinate-systems
0.005 seconds

    A spectral theory formulation for elastostatics by means of tensor spherical harmonics

    , Article Journal of Elasticity ; Volume 111, Issue 1 , 2013 , Pages 67-89 ; 03743535 (ISSN) Khorshidi, A ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    Consider a set of (N+1)-phase concentric spherical ensemble consisting of a core region encased by a sequence of nested spherical layers. Each phase is spherically isotropic and is functionally graded (FG) in the radial direction. Determination of the elastic fields when the outermost spherical surface is subjected to a nonuniform loading and the constituent phases are subjected to some prescribed nonuniform body force and eigenstrain fields is of interest. When the outermost layer is an unbounded medium with zero eigenstrain and body force fields, then an N-phase multi-inhomogeneous inclusion problem is realized. Based on higher-order spherical harmonics, presenting a three-dimensional... 

    Turbulent flow in converging nozzles, part one: Boundary layer solution

    , Article Applied Mathematics and Mechanics (English Edition) ; Volume 32, Issue 5 , 2011 , Pages 645-662 ; 02534827 (ISSN) Maddahian, R ; Farhanieh, B ; Firoozabadi, B ; Sharif University of Technology
    2011
    Abstract
    The boundary layer integral method is used to investigate the development of the turbulent swirling flow at the entrance region of a conical nozzle. The governing equations in the spherical coordinate system are simplified with the boundary layer assumptions and integrated through the boundary layer. The resulting sets of differential equations are then solved by the fourth-order Adams predictor-corrector method. The free vortex and uniform velocity profiles are applied for the tangential and axial velocities at the inlet region, respectively. Due to the lack of experimental data for swirling flows in converging nozzles, the developed model is validated against the numerical simulations. The...