Loading...
Search for: spinning--fibers
0.007 seconds
Total 23 records

    Ideal orientations of BCC crystals under equibiaxial tension loading

    , Article Mathematics and Mechanics of Solids ; Volume 21, Issue 8 , 2016 , Pages 1026-1042 ; 10812865 (ISSN) Khajeh Salehani, M ; Hajian, M ; Assempour, A ; Sharif University of Technology
    SAGE Publications Inc 
    Abstract
    Ideal orientations are one of the material characteristics of the applied mode of deformation. The transfer of material texture to orientations near specific ideal orientations can improve the mechanical properties of the material. In this paper, we focus on the determination of ideal orientations of BCC crystals under the equibiaxial tension mode of deformation. To do this, an Euler space scanning method based on a crystal plasticity approach is presented. In this method some initial orientations which are evenly spaced in the Euler space are selected and their evolutions into the ideal orientations are tracked. The loading is applied incrementally until all of the lattice spin components... 

    Simulation approach to investigate the effect of the jet structure and air pressure on the performance of siro-jet spinning

    , Article Fibres and Textiles in Eastern Europe ; Volume 92, Issue 3 , 2012 , Pages 46-50 ; 12303666 (ISSN) Hasani, H ; Hasani, M ; Sharif University of Technology
    2012
    Abstract
    In this paper, the effects of different parameters on the hairiness of siro-jet spun yarns, such as the nozzle pressure, the distance between the front roller nip and inlet of the nozzle, and jet structure were investigated. Using the Taguchi method, it was concluded that the factor air pressure has the strongest effect and the factor distance between the front roller nip and inlet of the nozzle does not have a significant effect on the performance of the siro-jet spinning system in reducing yarn hairiness. A computational fluid dynamics model was developed to simulate the airflow pattern inside the jets. The effect of air pressure and the jet structure was simulated using Fluent 6.3... 

    Different buckling regimes in direct electrospinning: A comparative approach to rope buckling

    , Article Journal of Polymer Science, Part B: Polymer Physics ; Volume 54, Issue 4 , 2016 , Pages 451-456 ; 08876266 (ISSN) Shariatpanahi, S. P ; Etesami, Z ; Iraji Zad, A ; Bonn, D ; Ejtehadi, M. R ; Sharif University of Technology
    John Wiley and Sons Inc  2016
    Abstract
    Understanding the dynamics of direct electrospinning is the key to control fiber morphologies that are critical for the development of new electrospinning methods and novel materials. Here, we propose the theory for direct electrospinning based on theories for (liquid) "rope coiling" and experimentally test it. For the experiments, the buckling of microscale liquid ropes formed from polymer solutions is studied systematically using three different electrospinning setups and for different polymer concentrations. We show that different buckling regimes exist, whose dynamics are governed by an interplay of electrical, inertial, and viscous forces, and that three different buckling regimes... 

    High flux electrospun nanofiberous membrane: Preparation by statistical approach, characterization, and microfiltration assessment

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 59 , 2016 , Pages 474-483 ; 18761070 (ISSN) Seyed Shahabadi, S. M ; Mousavi, S. A ; Bastani, D ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers 
    Abstract
    Preparation, characterization and evaluation of new generation of micro-filters based on polyacrylonitrile electrospun nanofiberous membrane (ENM) were thoroughly investigated. First, quantitative relationships between average diameter, bead area density of nano-fibers and certain electrospinning parameters, i.e., concentration, voltage, spinning distance, and feed rate, were established by empirical modeling based on a central composite design. The analysis revealed that concentration, voltage and distance are the significant parameters. Also, adequacy checking indicated the appropriateness of fit for the models. Afterwards, bead-free ENMs with diameter of 100-500 nm were prepared and... 

    Ethanol sensing properties of PVP electrospun membranes studied by quartz crystal microbalance

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 78 , 2016 , Pages 283-288 ; 02632241 (ISSN) Mohammadi Ari, M ; Irajizad, A ; Razi Astaraei, F ; Shariatpanahi, S. P ; Sarvari, R ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    In this study, ethanol gas sensing of PVP fiber membranes based on Quartz Crystal Microbalance (QCM) was investigated. The fibers were deposited on the QCM's electrodes by electrospinning the viscous blend solutions of PVP. The effects of PVP concentration on morphology of the fibers and their permeability when exposed to ethanol were investigated. Membranes which were prepared using low concentration solutions, contained beads and high packing fibers and showed low permeability. Increase of the PVP concentration to 12 wt% resulted in continuous fine fibers with good permeability. Furthermore, higher PVP concentrations were found to decrease ethanol permeability due to larger fiber radius... 

    Electrical bending instability in electrospinning visco-elastic solutions

    , Article Journal of Polymer Science, Part B: Polymer Physics ; Volume 54, Issue 11 , 2016 , Pages 1036-1042 ; 08876266 (ISSN) Shariatpanahi, S. P ; Bonn, D ; Ejtehadi, M. R ; Iraji Zad, A ; Sharif University of Technology
    John Wiley and Sons Inc 
    Abstract
    The electrical bending instability in charged liquid jets is the phenomenon determining the process of electrospinning. A model of this phenomenon is lacking however, mostly due to the complicated interplay between the viscosity and elasticity of the solution. To investigate the bending instability, we performed electrospinning experiments with a solution of polyethylene oxide in water/ethanol. Using a fast camera and sensitive multimeter, we deduced an experimental dispersion relation describing the helix pitch length as a function of surface charge. To understand this relation, we developed a theoretical model for the instability for a wide range of visco-elastic materials, from conducting... 

    Synthesis of mesoporous functional hematite nanofibrous photoanodes by electrospinning

    , Article Polymers for Advanced Technologies ; Volume 27, Issue 3 , 2016 , Pages 358-365 ; 10427147 (ISSN) Saveh Shemshaki, N ; Latifi, M ; Bagherzadeh, R ; Malekshahi Byranvand, M ; Naseri, N ; Dabirian, A ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    Iron(III) oxide (hematite, Fe2O3) nanofibers, as visible light-induced photoanode for water oxidation reaction of a water splitting process, were fabricated through electrospinning method followed by calcination treatment. The prepared samples were characterized with scanning electron microscopy, and three-electrode galvanostat/potentiostat for evaluating their photoelectrochemical (PEC) properties. The diameter of the as-spun fibers is about 300nm, and calcinated fibers have diameter less than 110nm with mesoporous structure. Optimized multilayered electrospun α-Fe2O3 nanostructure mats showed photocurrent density of 0.53mA/cm2 under dark and visible illumination conditions at voltage 1.23V... 

    Nanostructured aluminium titanate (Al2TiO5) particles and nanofibers: Synthesis and mechanism of microstructural evolution

    , Article Materials Characterization ; Volume 103 , 2015 , Pages 125-132 ; 10445803 (ISSN) Azarniya, A ; Azarniya, A ; Madaah Hosseini, H. R ; Simchi, A ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    Abstract In this study, aluminium titanate (AT) particles and nanofibers were synthesized through citrate sol gel and sol gel-assisted electrospinning methods in both nanostructured powder and nanofiber forms. The results of X-ray diffraction analysis, field-emission scanning electron microscopy and differential thermal analysis showed that the synthetic products benefit a nanostructured nature with a grain size less than 70 nm. The optimal values for time and temperature at which a roughly pure AT is attained were determined as 2 h and 900 C, respectively. It was found that the sol gel precursor bears an amorphous structure till 700 C and begins to be crystallized to alumina, anatase and AT... 

    Fabrication of PLA/PEG/MWCNT electrospun nanofibrous scaffolds for anticancer drug delivery

    , Article Journal of Applied Polymer Science ; Volume 132, Issue 3 , August , 2015 ; 00218995 (ISSN) Anaraki, N. A ; Rad, L. R ; Irani, M ; Haririan, I ; Sharif University of Technology
    John Wiley and Sons Inc  2015
    Abstract
    In the present study, polylactic acid (PLA)/polyethylene glycol (PEG)/multiwalled carbon nanotube (MWCNT) electrospun nanofibrous scaffolds were prepared via electrospinning process and their applications for the anticancer drug delivery system were investigated. A response surface methodology based on Box-Behnken design (BBD) was used to evaluate the effect of key parameters of electrospinning process including solution concentration, feeding rate, tip-collector distance (TCD) and applied voltage on the morphology of PLA/PEG/MWCNT nanofibrous scaffolds. In optimum conditions (concentration of 8.15%, feeding rate of 0.2 mL/h, voltage of 18.50 kV and TCD of 13.0 cm), the minimum experimental... 

    Computational-based approach for predicting porosity of electrospun nanofiber mats using response surface methodology and artificial neural network methods

    , Article Journal of Macromolecular Science, Part B: Physics ; Volume 54, Issue 11 , 2015 , Pages 1404-1425 ; 00222348 (ISSN) Hadavi Moghadam, B ; Khodaparast Haghi, A ; Kasaei, S ; Hasanzadeh, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    Comparative studies between response surface methodology (RSM) and artificial neural network (ANN) methods to find the effects of electrospinning parameters on the porosity of nanofiber mats is described. The four important electrospinning parameters studied included solution concentration (wt.%), applied voltage (kV), spinning distance (cm) and volume flow rate (mL/h). It was found that the applied voltage and solution concentration are the two critical parameters affecting the porosity of the nanofiber mats. The two approaches were compared for their modeling and optimization capabilities with the modeling capability of RSM showing superiority over ANN, having comparatively lower values of... 

    A flow injection μ-solid phase extraction system based on electrospun polyaniline nanocomposite

    , Article Journal of Chromatography A ; Volume 1433 , February , 2016 , Pages 34–40 ; 00219673 (ISSN) Bagheri, H ; Khanipour, P ; Roostaie, A ; Sharif University of Technology
    Abstract
    In this study, a fast and sensitive flow injection μ-solid phase extraction (FI-μ-SPE) technique based on an electrospun polyaniline (PANI) nanocomposite in conjunction with gas chromatography-mass spectrometry (GC-MS) was developed. The PANI-based nanocomposite was synthesized by electrospinning of a solution containing polyvinyl alcohol (PVA)/PANI. The majority of PVA template was subsequently removed from the whole PVA/PANI nanofibers blend by exposing the electrospun nanocomposite to hot water. The homogeneity, porosity and characterization of the electrospun nanofibers were investigated by the scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Due to... 

    Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan/bacterial cellulose nanofibrous composites

    , Article Composites Part A: Applied Science and Manufacturing ; Volume 85 , 2016 , Pages 113-122 ; 1359835X (ISSN) Azarniya, A ; Eslahi, N ; Mahmoudi, N ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this work, novel chitosan/bacterial cellulose (CS/BC) nanofibrous composites reinforced with graphene oxide (GO) nanosheets are introduced. As cell attachment and permeability of nanofibrous membranes highly depend on their fiber diameter, the working window for successful electrospinning to attain sound nanofibrous composites with a minimum fiber diameter was determined by using the response surface methodology. It is shown that the addition of GO nanosheets to CS/BC significantly reduces the average size of the polymeric fibers. Their mechanical properties are also influenced and can be tailored by the concentration of GO. Fourier transform infrared spectroscopy reveals hydrogen bonding... 

    On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide

    , Article Materials Science and Engineering C ; Volume 70 , 2017 , Pages 121-131 ; 09284931 (ISSN) Mahmoudi, N ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Nanofibrous structures that mimic the native extracellular matrix and promote cell adhesion have attracted considerable interest for biomedical applications. In this study, GO-modified nanofibrous biopolymers (GO) were prepared by electrospinning blended solutions of chitosan (80 vol%), polyvinyl pyrrolidone (15 vol%), polyethylene oxide (5 vol%) containing GO nanosheets (0–2 wt%). It is shown that GO nanosheets significantly change the conductivity and viscosity of highly concentrated chitosan solutions, so that ultrafine and uniform fibers with an average diameter of 60 nm are spinnable. The GO-reinforced nanofibers with controlled pore structure exhibit enhanced elastic modulus and... 

    Ultrasound-electrospinning-assisted fabrication and sensing evaluation of a novel membrane as ultrasensitive sensor for copper (II) ions detection in aqueous environment

    , Article Ultrasonics Sonochemistry ; Volume 44 , June , 2018 , Pages 152-161 ; 13504177 (ISSN) Gao, W ; Haratipour, P ; Rezaie Kahkha, M. R ; Tahvili, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The present study has reported an optimized fabrication and application of a novel PVA/TEOS/Schiff base nanofibers membrane as a highly sensitive copper (II) ions in aqueous environment. Here in, for first time, an ultrasound-assisted synthesized symmetric Schiff base has been immobilized on a hybrid polyvinyl alcohol (PVA) and TEOS using electrospinning technique for detection and filtration of copper ions. For this purpose, various working parameters were evaluated and finally the optimized nano fibers membrane was synthesized with 72 nm thickness and PVA/TEOS/Schiff base ratio of (wt%) 8:6:1. The optimized sample named PTLNFM has been employed successfully as an ultra sensitive... 

    Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles

    , Article Journal of Cleaner Production ; Volume 183 , 2018 , Pages 1197-1206 ; 09596526 (ISSN) Hosseini, A ; Vossoughi, M ; Mahmoodi, N. M ; Sadrzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, novel chitosan/poly(vinyl alcohol) (PVA)/SiO2 nanocomposite ENMs were prepared to improve the mechanical strength and permeation properties of ENMs. The effect of various concentrations of SiO2 in the spinning solution (0, 0.5, 1.0 and 2.0 wt %) on the morphology, fiber diameter, porosity, thermomechanical properties, and permeability of the synthesized membranes was investigated. The prepared affinity membranes were utilized for the removal of dye from colored wastewater. Incorporating SiO2, as a reinforcing agent, was found to increase the compaction resistance of the nanocomposite ENMs. With the addition of 0.5 wt % of SiO2, the Young's modulus of the prepared membranes... 

    Polybutylene terephthalate-nickel oxide nanocomposite as a fiber coating

    , Article Analytica Chimica Acta ; Volume 863, Issue 1 , 2015 , Pages 20-28 ; 00032670 (ISSN) Bagheri, H ; Roostaie, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    A highly efficient polybutylene terephthalate (PBT)-based nanocomposite containing nickel oxide nanoparticles was synthesized by electrospinning technique and used as a fiber coating for solid phase microextraction. The influential morphological parameters and capability of the prepared nanocomposite including the NiO content, the coating time, the PBT concentration and applied voltage were considered for optimization. The applicability of the synthesized fiber coating was examined by headspace solid phase micro extraction and gas chromatography mass spectrometry detection of some volatile organic compounds in aqueous samples. Among the synthesized nanocomposites and pristine PBT nanofibers,... 

    Physical, morphological, and biological studies on PLA/nHA composite nanofibrous webs containing equisetum arvense herbal extract for bone tissue engineering

    , Article Journal of Applied Polymer Science ; Volume 134, Issue 39 , 2017 ; 00218995 (ISSN) Khakestani, M ; Jafari, S. H ; Zahedi, P ; Bagheri, R ; Hajiaghaee, R ; Sharif University of Technology
    Abstract
    A series of herbal extract incorporated into poly(lactic acid) (PLA) composite nanofibrous scaffolds were successfully prepared by using electrospinning technique. Equisetum arvense extract (EE) and nanohydroxyapatite (nHA) in different quantities were loaded into PLA solution to fabricate composite nanofibrous webs under various electrospinning conditions. Uniform nanofibers were obtained with an average diameter of 157 ± 47 nm in the case of those containing the herbal extract. Characterization of the webs was carried out by means of Fourier transform infrared (FTIR) spectroscopy, field emission-scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and... 

    Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PH) nanofibrous membrane for high flux membrane distillation

    , Article Journal of Membrane Science ; Volume 537 , 2017 , Pages 140-150 ; 03767388 (ISSN) Seyed Shahabadi, S. M ; Rabiee, H ; Seyedi, S. M ; Mokhtare, A ; Brant, J. A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this study, superhydrophobic dual layer membranes with highly porous structure were fabricated using electrospinning and electrospraying techniques. Electrospinning method was used to produce the support nanofibrous layer using polyvinylidene fluoride-co-hexafluoropropylene (PH) as the polymer and a mixed solvent system of N,N-Dimetylformamide (DMF) and acetone. Afterwards, hydrophobic, functionalized TiO2 nanoparticles were deposited on the surface of the support layer using the electrospraying technique. TiO2 chemical functionalization and their deposition on the support layer were investigated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. The... 

    A flow injection μ-solid phase extraction system based on electrospun polyaniline nanocomposite

    , Article Journal of Chromatography A ; Volume 1433 , 2016 , Pages 34-40 ; 00219673 (ISSN) Bagheri, H ; Khanipour, P ; Roostaie, A ; Sharif University of Technology
    Elsevier 
    Abstract
    In this study, a fast and sensitive flow injection μ-solid phase extraction (FI-μ-SPE) technique based on an electrospun polyaniline (PANI) nanocomposite in conjunction with gas chromatography-mass spectrometry (GC-MS) was developed. The PANI-based nanocomposite was synthesized by electrospinning of a solution containing polyvinyl alcohol (PVA)/PANI. The majority of PVA template was subsequently removed from the whole PVA/PANI nanofibers blend by exposing the electrospun nanocomposite to hot water. The homogeneity, porosity and characterization of the electrospun nanofibers were investigated by the scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Due to... 

    The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets

    , Article Biomedical Materials (Bristol) ; Volume 11, Issue 2 , 2016 ; 17486041 (ISSN) Mahmoudifard, M ; Soleimani, M ; Hatamie, S ; Zamanlui, S ; Ranjbarvan, P ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    Electrospinning of composite polymer solutions provides fantastic potential to prepare novel nanofibers for use in a variety of applications. The addition of graphene (G) and graphene oxide (GO) nanosheets to bioactive polymers was found to enhance their conductivity and biocompatibility. Composite conductive nanofibers of polyaniline (PANI) and polyacrylonitrile (PAN) with G and GO nanosheets were prepared by an electrospinning process. The fabricated membranes were investigated by physical and chemical examinations including scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD) and tensile assay. The muscle satellite cells enriched by a pre-plating technique were...