Loading...
Search for: stability-method
0.006 seconds

    Robust decentralized position/force control of cooperative robots without velocity measurement

    , Article 2005 IEEE International Conference on Industrial Technology, ICIT 2005, Hong Kong, 14 December 2005 through 17 December 2005 ; Volume 2005 , 2005 , Pages 1403-1408 ; 0780394844 (ISBN); 9780780394841 (ISBN) Sadati, N ; Elhamifar, E ; Sharif University of Technology
    2005
    Abstract
    A decentralized control scheme for multiple cooperative manipulators system is developed to achieve the desired performance in motion and force tracking in the presence of uncertainties in the dynamic equations of the robots. To reduce the effects of uncertainties in the closed-loop performance, a robust control algorithm using a robustifying term is proposed. Based on the Lyapunov stability method, it is proved that all the signals in the closed-loop, composed of a robot, an observer and a controller are uniformly ultimately bounded. Also to avoid the difficulties of using velocity sensors within the hand architecture an output feedback control scheme with a linear observer is used. © 2005... 

    A lower bound for algebraic connectivity based on the connection-graph- stability method

    , Article Linear Algebra and Its Applications ; Volume 435, Issue 1 , Sep , 2011 , Pages 186-192 ; 00243795 (ISSN) Ajdari Rad, A ; Jalili, M ; Hasler, M ; Sharif University of Technology
    2011
    Abstract
    This paper introduces the connection-graph-stability method and uses it to establish a new lower bound on the algebraic connectivity of graphs (the second smallest eigenvalue of the Laplacian matrix of the graph) that is sharper than the previously published bounds. The connection-graph-stability score for each edge is defined as the sum of the lengths of the shortest paths making use of that edge. We prove that the algebraic connectivity of the graph is bounded below by the size of the graph divided by the maximum connection-graph-stability score assigned to the edges  

    Output feedback decentralized control of multi-agent manipulation systems

    , Article IEEE International Conference on Engineering of Intelligent Systems, ICEIS 2006, Islamabad, 22 April 2006 through 23 April 2006 ; 2006 ; 1424404568 (ISBN); 9781424404568 (ISBN) Sadati, N ; Elhamifar, E ; Sharif University of Technology
    2006
    Abstract
    In this paper, decentralized control algorithms for cooperative multi-agent manipulation systems are developed. To control the positions of the agents and the exerted forces on the object in the presence of uncertainties in the dynamics of the agents, two different methods are considered. In the first approach, robust control of the system is proposed. Using the Lyapunov stability method, the convergence of the position errors to zero is demonstrated. Also a bound on the errors of the exerted forces is achieved which can be made small enough by choosing the appropriate estimated values for the physical parameters of the agents. In the second approach, adaptive control algorithm is proposed... 

    A stabilized piezolaminated nine-nodded shell element formulation for analyzing smart structures behaviors

    , Article Mechanics of Advanced Materials and Structures ; Volume 23, Issue 2 , 2016 , Pages 187-194 ; 15376494 (ISSN) Hosseini Kordkheili, S. A ; Salmani, H ; Afshari, S. S. G ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    An explicit hybrid stabilization method is utilized together with a reduced order integration scheme to stabilize spurious zero energy modes from the sub-integrated degenerated shell element. This stabilization is achieved after employing appropriate contravariant higher order stress modes. The relevant finite element formulation of the piezolaminated nine-nodded shell element is then derived to analyze smart structures behaviors. To show the capabilities of the presented formulation, it has been implemented in a finite element code. The developed code is used to analyze some typical problems. The results are compared with those obtained from other schemes in the literature and experiments  

    Some applications of fractional calculus in suppression of chaotic oscillations

    , Article IEEE Transactions on Industrial Electronics ; Volume 55, Issue 11 , 2008 , Pages 4094-4101 ; 02780046 (ISSN) Tavazoei, M. S ; Haeri, M ; Jafari, S ; Bolouki, S ; Siami, M ; Sharif University of Technology
    2008
    Abstract
    This paper presents two different stabilization methods based on the fractional-calculus theory. The first method is proposed via using the fractional differentiator, and the other is constructed based on using the fractional integrator. It has been shown that the proposed techniques can be used to suppress chaotic oscillations in 3-D chaotic systems. To show the practical capability of the methods, some experimental results on the control of chaos in chaotic circuits are presented. © 2008 IEEE  

    Effect of collision on self-assembly of nanoparticles in zirconia microparticle suspension

    , Article Journal of Dispersion Science and Technology ; 2020 Jiryaei, Z ; Saidi, M. H ; Sharif University of Technology
    Bellwether Publishing, Ltd  2020
    Abstract
    Nanoparticle halo mechanism is a stabilization method for microparticle suspensions. This study investigates suspension pH and nanoparticles–microparticles collision effects on the stabilization of an aqueous binary suspension. The long-term turbidity measurements show that for the nanosilica suspension stability is directly correlated with pH values; however, in the cases of zirconia and binary suspensions, it is not a monotonic function of pH. It is shown that for binary suspension, the halo mechanism is the primary method affecting the stability of the suspension. The suspension is best-stabilized at pH = 5 that is associated with high halo mechanism efficiency, while increased repulsive... 

    Effect of collision on self-assembly of nanoparticles in zirconia microparticle suspension

    , Article Journal of Dispersion Science and Technology ; Volume 43, Issue 6 , 2022 , Pages 787-795 ; 01932691 (ISSN) Jiryaei, Z ; Saidi, M. H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Nanoparticle halo mechanism is a stabilization method for microparticle suspensions. This study investigates suspension pH and nanoparticles–microparticles collision effects on the stabilization of an aqueous binary suspension. The long-term turbidity measurements show that for the nanosilica suspension stability is directly correlated with pH values; however, in the cases of zirconia and binary suspensions, it is not a monotonic function of pH. It is shown that for binary suspension, the halo mechanism is the primary method affecting the stability of the suspension. The suspension is best-stabilized at pH = 5 that is associated with high halo mechanism efficiency, while increased repulsive...