Loading...
Search for: stabilizers--agents
0.005 seconds

    An investigation on the optimum conditions of synthesizing a magnetite based ferrofluid as MRI contrast agent using Taguchi method

    , Article Materials Science- Poland ; Volume 31, Issue 2 , 2013 , Pages 253-258 ; 01371339 (ISSN) Ahmadi, R ; Hosseini, H. R. M ; Sharif University of Technology
    2013
    Abstract
    In this study, some stabilized magnetite based ferrofluids were synthesized using Dextran as a stabilizing agent. In order to achieve optimum experimental conditions for synthesizing ferrofluids as MRI contrast agents, the Taguchi method was used. This approach was employed to design and minimize the number of required experiments. By using the Taguchi orthogonal (L16) array, four parameters including solution temperature and alkalinity, reaction temperature and stirring rate were selected at four predetermined levels for 16 experiments. Synthesizing processes established based on this set of experimental conditions were carried out and the obtained ferrofluids were characterized using PCS,... 

    Effects of stabilizers on sustainability, activity and decolorization performance of Manganese Peroxidase enzyme produced by Phanerochaete chrysosporium

    , Article Journal of Environmental Chemical Engineering ; Volume 8, Issue 6 , 2020 Emami, E ; Zolfaghari, P ; Golizadeh, M ; Karimi, A ; Lau, A ; Ghiasi, B ; Ansari, Z ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Manganese Peroxidase (MnP), is one of the most promising lignin depolymerization enzymes, which has been widely used for degradation purposes. Nevertheless, MnP tends to lose activity rapidly during its maintenance phase and degradation process, especially in the inevitable presence of hydrogen peroxide. This study aimed to improve MnP efficiency produced by Phanerochaete chrysosporium, via enhancing its sustainability. In this context, the effects of MnO2, Fe3O4, PEG, Veratryl Alcohol (VA), and DMSO as stabilizing agents on MnP activity were explored both in vivo and in vitro. During in vivo experiments, heterogeneous Fe3O4 was found to be the desirable choice to enhance MnP production,... 

    Efficient dye-sensitized solar cells based on carbon-doped TiO2 hollow spheres and nanoparticles

    , Article Journal of Materials Science: Materials in Electronics ; Volume 26, Issue 11 , 2015 , Pages 8863-8876 ; 09574522 (ISSN) Tabari Saadi, Y ; Mohammadi, M. R ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Different structures of TiO2 photoelectrodes are fabricated with various arrangement modes of the layers. TiO2 nanoparticles, synthesized by stabilizing agent free non-hydrolytic sol–gel method, are employed as the under layer, whereas carbon-doped TiO2 hollow spheres, prepared by hydrothermally grown carbon template, are used as the scattering layer of solar cells. The nanoparticles (22 nm) have anatase structure, while 300–700 nm hollow spheres show mixtures of anatase and rutile phases. X-ray photoelectron spectroscopy confirms that carbon is doped into TiO2 hollow spheres, resulting in a decrease in band gap energy in the range 2.96–3.13 eV compared with 3.04 eV band gap energy for the... 

    Micro-grid stabilizer design using sliding mode controller

    , Article International Journal of Electrical Power and Energy Systems ; Volume 116 , March , 2020 Mousavi Somarin, H ; Parvari, R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Future of the network stability is endangered by increasing the number of Distributed Generation (DG) and Renewable Energy Source (RES) units. The idea of the Virtual Synchronous Machine (VSM) has been raised to control the power electronic-based DG/RES converters in order to have better integration with the grid. This paper introduces a new stabilizer design for VSM-based converters to guarantee the stability of the micro-grid (MG). In this regard, the Sliding Mode Control (SMC) theory, which is robust against the disturbances and uncertainties, is employed to cope with the intermittent and nonlinear nature of DGs. The mutual operation of the proposed inverter and MG stabilizer has the... 

    Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field

    , Article Powder Technology ; Volume 308 , 2017 , Pages 149-157 ; 00325910 (ISSN) Mehrali, M ; Sadeghinezhad, E ; Akhiani, A. R ; Tahan Latibari, S ; Metselaar, H. S. C ; Kherbeet, A. S ; Mehrali, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The heat transfer characteristics and entropy generation rate of hybrid graphene-magnetite nanofluids under forced laminar flow that subjected to the permanent magnetic fields were investigated. For this purpose, a nanoscale reduced graphene oxide-Fe3O4 hybrid was synthesized by using graphene oxide, iron salts and tannic acid as the reductant and stabilizer. The thermophysical and magnetic properties of the hybrid nanofluid have been widely characterized and thermal conductivity has shown an enhancement of 11%. The experimental results indicated that the heat transfer enhancement of hybrid magnetite nanofluid compared to the case of distilled was negligible when no magnetic field was... 

    The effects of stabilizers on the thermal and the mechanical properties of rammed earth at various humidities and their environmental impacts

    , Article Construction and Building Materials ; Volume 200 , 2019 , Pages 616-629 ; 09500618 (ISSN) Toufigh, V ; Kianfar, E ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The overall behavior of rammed earth (RE) as a low embodied energy construction method can be enhanced by using stabilizers. Several studies have been performed on cement and lime stabilized RE. However, studies on other additives, especially the sustainable ones, are limited. In this research, the effect of stabilizers including cement, pozzolan, microsilica, fiberglass, guar gum and phase change material (PCM) was evaluated on the performance of RE mixtures. The mixtures were assessed by considering the durability, shrinkage, thermal conductivity, mechanical properties and their sensitivity to the humidity. Then, the correlations were determined between the mechanical properties and the... 

    Turning toxic nanomaterials into a safe and bioactive nanocarrier for co-delivery of DOX/pCRISPR

    , Article ACS Applied Bio Materials ; Volume 4, Issue 6 , 2021 , Pages 5336-5351 ; 25766422 (ISSN) Rabiee, N ; Bagherzadeh, M ; Ghadiri, A. M ; Fatahi, Y ; Aldhaher, A ; Makvandi, P ; Dinarvand, R ; Jouyandeh, M ; Saeb, M. R ; Mozafari, M ; Shokouhimehr, M ; Hamblin, M. R ; Varma, R. S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Hybrid bioactive inorganic-organic carbon-based nanocomposites of reduced graphene oxide (rGO) nanosheets enlarged with multi-walled carbon nanotubes (MWCNTs) were decorated to provide a suitable space forin situgrowth of CoNi2S4and green-synthesized ZnO nanoparticles. The ensuing nanocarrier supplied π-π interactions between the DOX drug and a stabilizing agent derived from leaf extracts on the surface of ZnO nanoparticles and hydrogen bonds; gene delivery of (p)CRISPR was also facilitated by chitosan and alginate renewable macromolecules. Also, these polymers can inhibit the potential interactions between the inorganic parts and cellular membranes to reduce the potential cytotoxicity....