Loading...
Search for: stand-alone
0.005 seconds

    A computationally efficient Li-ion electrochemical battery model for long-term analysis of stand-alone renewable energy systems

    , Article Journal of Energy Storage ; Volume 17 , 2018 , Pages 93-101 ; 2352152X (ISSN) Astaneh, M ; Dufo Lopez, R ; Roshandel, R ; Golzar, F ; Bernal Agustin, J. L ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper we introduce a Simplified Single Particle Model (SSPM), which is obtained from the general mathematical formulation of Li-ion batteries. The model is validated by using different commercial graphite/LiFePO4 cells, and results show agreement with more complicated models and experimental data for low operating currents of less than 1C. A maximum relative error of less than 2% can be observed to estimate cell voltage in the plateau region of the charge/discharge curves. Therefore, the proposed model is suitable in the case of stand-alone renewable energy systems, where battery current is typically lower than C/10. By increasing the current, the SSPM deviates from more accurate... 

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Somayeh (Author) ; Roshandel, Ramin (Supervisor)
    Abstract
    Inappropriate effects of fossil fuels and conventional power generation systems on the environment have necessitated a sustainable energy system for the next decade by growing interests in renewable energy systems. The world’s most fast-growing renewable energy resource is the wind energy. The main problem of wind power is the power fluctuations at the load side caused by the variable nature of wind speed, and the main issue in case of remote locations is the long-term storage of power generated by wind turbines. Batteries can be used to store a limited amount of energy for a short time. Although new advances in this field have been achieved, most common type of batteries is hardly able to... 

    Control of a Distributed Generation System Comprising Wind Turbine, Photovoltaic Array, and Fuel Cell in Standalone
    Operation

    , M.Sc. Thesis Sharif University of Technology Shirazi, Moein (Author) ; Zolghadri, Mohammad Reza (Supervisor) ; Karimi, Houshang (Supervisor)
    Abstract
    On account of the exhausting nature and increasing daily cost of the fossil fuels, it seems that replacing the fossil fuels by an alternative source of energy is inevitable. Moreover, in the remote areas that the electricity network is not accessible, the use of distributed sources (DSs) such as solar energy and wind energy is advantageous. Continuity of the supply and voltage control of the load in spite of the stochastic nature of the generated power of the renewable energy resources are the main concerns in the distributed generation (DG) systems. In this thesis, stand-alone operation of a DG unit comprising a solar unit and wind turbine as primary sources of energy is considered. A... 

    Modeling and optimizing of photovoltaic-wind-diesel hybrid systems for electrification of remote villages in Iran

    , Article Scientia Iranica ; Volume 23, Issue 4 , 2016 , Pages 1719-1730 ; 10263098 (ISSN) Sedghi, M ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Sharif University of Technology 
    Abstract
    The main objective of this work is to provide an electric supply to remote Iranian villages that have no access to electricity grid using a stand-alone hybrid system. The hybrid systems considered in this study consist of a photovoltaic array, wind turbine, diesel generator, and battery storage. Measured wind speed data was used for a wind turbine energy production model. The hybrid system optimized the electricity supply of villages with 6, 14, 20, 40, and 60 households in Bojnord, Moorchekhort, Kish, Langroud, Khash, and Meshkinshahr. The main purpose of this optimization is to find an economical system configuration that is able to fulfill the energy requirements of a given load... 

    Design and Development Assessment a Power Converter to Spply Stand-Alone Loads from a 1KW Polymer Electrolyte Membrane Fuel Cell

    , M.Sc. Thesis Sharif University of Technology Shahmohammadi, Ahmad (Author) ; Rajabi, Abbas (Supervisor) ; Tahami, Farzad (Co-Advisor) ; Roshandel, Ramin (Co-Advisor)
    Abstract
    Isolated electric energy systems are often needed to supply 3 kind of electric loads. This could be caused due to geographic isolation, the necessity of load mobility, demanded values of voltage and current that are not compatible with the local networks. This makes the design and construction of stand-alone energy systems a must. Because of sustainability concerns and enviromental pollution avoidance, Modern designs are being pushed towards cleaner energies and technologies. Polymer electrolyte membrane type fuel cells are among the new technologies that are being considered as a good alternative to the traditional power sources used for stand-alone energy systems. Although the basic... 

    A novel lifetime prediction method for lithium-ion batteries in the case of stand-alone renewable energy systems

    , Article International Journal of Electrical Power and Energy Systems ; Volume 103 , 2018 , Pages 115-126 ; 01420615 (ISSN) Astaneh, M ; Dufo López, R ; Roshandel, R ; Bernal Agustin, J. L ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper presents a mathematical formulation of lithium-ion batteries, including aging and temperature effects. The model is developed by integrating the simplified single particle model (SSPM) and reduced-order model (ROM) to predict solid electrolyte interphase growth (SEI). Results show agreement with the experimental data at 25 °C operating temperature and moderate cycling currents. A maximum error of 3.6% in finding the battery discharged Ah is observed in harsh operating conditions, including 60 °C and approaching the end of life of the battery. Due to the typical operating conditions of stand-alone renewable energy systems, more accurate estimations are expected. Finally, this... 

    Solar-hydrogen renewable supply system optimisation based on demand side management

    , Article International Journal of Ambient Energy ; 2019 ; 01430750 (ISSN) Haddadi, M ; Jafarinejad, T ; Badpar, F ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Stand-alone hybrid power systems are an alternative to main electricity grids, where the grid extension is costly or the trifling local consumption would not justify its expansion. However, lack of consistency and uniformity in renewable energy sources, and the restrictions of energy storage systems make system sizing a challenging task. Optimum size of a stand-alone system depends on several factors including energy demand function. In this paper, different types of demand functions are addressed for optimising a solar-hydrogen supply system. Different parameters are defined to investigate the impact of household population on the power generation cost, and also to determine the optimum... 

    Solar-hydrogen renewable supply system optimisation based on demand side management

    , Article International Journal of Ambient Energy ; 2019 ; 01430750 (ISSN) Haddadi, M ; Jafarinejad, T ; Badpar, F ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Stand-alone hybrid power systems are an alternative to main electricity grids, where the grid extension is costly or the trifling local consumption would not justify its expansion. However, lack of consistency and uniformity in renewable energy sources, and the restrictions of energy storage systems make system sizing a challenging task. Optimum size of a stand-alone system depends on several factors including energy demand function. In this paper, different types of demand functions are addressed for optimising a solar-hydrogen supply system. Different parameters are defined to investigate the impact of household population on the power generation cost, and also to determine the optimum... 

    Generation expansion planning of stand-alone micro-power systems under uncertainty using advanced planning methodology

    , Article Energy Exploration and Exploitation ; Volume 26, Issue 4 , 2008 , Pages 221-239 ; 01445987 (ISSN) Khodayar, M. E ; Rahimi Kian, A ; Ehsan, M ; Sharif University of Technology
    2008
    Abstract
    In this paper a strategic planning framework for selecting the best configuration and capacity of different power generating technologies including renewable energy resources in stand-alone micro-power systems is proposed. The proposed framework is composed of three decision making techniques to identify the most feasible and efficient plans according to attributes and uncertain parameters in the planning environment. The framework considers the robustness and risk analysis of different plans exposed to uncertainties in the planning environment and selects the configurations that meet the objectives with the least risk exposure. The proposed methodology is implemented as a case study of a... 

    Solar-hydrogen renewable supply system optimisation based on demand side management

    , Article International Journal of Ambient Energy ; Volume 43, Issue 1 , 2022 , Pages 754-763 ; 01430750 (ISSN) Haddadi, M ; Jafarinejad, T ; Badpar, F ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Stand-alone hybrid power systems are an alternative to main electricity grids, where the grid extension is costly or the trifling local consumption would not justify its expansion. However, lack of consistency and uniformity in renewable energy sources, and the restrictions of energy storage systems make system sizing a challenging task. Optimum size of a stand-alone system depends on several factors including energy demand function. In this paper, different types of demand functions are addressed for optimising a solar-hydrogen supply system. Different parameters are defined to investigate the impact of household population on the power generation cost, and also to determine the optimum... 

    Stand alone performance of permanent magnet synchronous wind power generator with current source matrix converter

    , Article Electric Power Components and Systems ; Volume 43, Issue 8-10 , 2015 , Pages 1018-1027 ; 15325008 (ISSN) Hojabri, H ; Mokhtari, H ; Chang, L ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    A matrix converter is a voltage/current source AC/AC frequency converter. In grid-connected operation of a variable-speed permanent magnet synchronous wind power generator, the matrix converter is normally controlled as a voltage source converter. In this control method, the generator-side voltage is synthesized from the grid-side voltage source. However, in the stand-alone mode of operation, the grid-side stiff voltage source is not available, and the input filter of the matrix converter is unstable. In this article, a new control method is presented that controls a permanent magnet synchronous wind generator in a stand-alone mode with a matrix converter as a current source converter. The...