Loading...
Search for: state-space-approach
0.007 seconds

    Design of electrostatic actuators for suppressing vertical disturbances of CMOS-MEMS capacitive force sensors in bio applications

    , Article Mechanics and Industry ; Volume 16, Issue 3 , 2015 ; 22577777 (ISSN) Jalil Mozhdehi, R ; Selk Ghafari, A ; Khayyat, A. A ; Sharif University of Technology
    EDP Sciences  2015
    Abstract
    The objective of this work is to design electrostatic actuators for a CMOS-MEMS nano-newton capacitive force sensor to suppress vertical vibrations disturbances. Electrostatic actuators are selected because the movable part of this force sensor is anchored to the fixed parts. In the first step, we propose a framework for simulation of the force sensor based on finite element method. The proposed model is modified utilizing comparison between the simulation and experimental models to improve the performance of the model. Then, 14 pairs of electrostatic actuators are designed for applying the control algorithm and their pull-in voltage is calculated. In next step, Modal Analysis is applied to... 

    Out-of-plane stresses in composite shell panels: Layerwise and elasticity solutions

    , Article Acta Mechanica ; Volume 220, Issue 1-4 , 2011 , Pages 15-32 ; 00015970 (ISSN) Miri, A. K ; Nosier, A ; Sharif University of Technology
    Abstract
    Boundary-layer effects in lengthy cross-ply laminated circular cylindrical shell panels under uniform axial extension are investigated by two analytical solutions. First, Reddy's layerwise theory with state-space approach is utilized to determine the local interlaminar stresses. In this method, the general displacement field is discretized through the shell thickness by a linear shape function. When the shell panel is subjected to an axial force, the axial strain is estimated by an equivalent single-layer theory. Second, the stress-function approach along with Fourier series expansion is applied to develop a novel elasticity solution. The elasticity solution, which is based on simply-support... 

    Relief of edge effects in bi-adhesive composite joints

    , Article Composites Part B: Engineering ; Volume 108 , 2017 , Pages 153-163 ; 13598368 (ISSN) Yousefsani, S. A ; Tahani, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Three-dimensional thermo-mechanical stress analysis of composite joints with bi-adhesive bonding is presented using the full layerwise theory. Based on three-dimensional elasticity theory, sets of fully coupled governing differential equations are derived using the principle of minimum total potential energy and are simultaneously solved using the state space approach. Results show that bi-adhesive bonding substantially relieves the edge effects. Moreover, series of parametric studies reveal the nonlinear effects of bonding length ratio and the relative stiffness and coefficient of thermal expansion of the mid- and side-adhesives. It is also concluded that the optimum design of a bi-adhesive... 

    Investigating the instabilities of the TLM method using a state-space approach

    , Article 2007 Workshop on Computational Electromagnetics in Time-Domain, CEM-TD, Perugia, 15 October 2007 through 17 October 2007 ; 2007 ; 142441170X (ISBN); 9781424411702 (ISBN) Mostafanezhad, I ; Banai, A ; Farzaneh, F ; Sharif University of Technology
    2007
    Abstract
    Stability has been one of the major issues of time-domain numerical methods used for solving Maxwell equations. This problem takes a more severe form when additional algorithms are introduced to the computation domain (e.g. Absorbing Boundary Conditions-ABCs). There are a number of methods for investigating the stability of a simulation. In this article the problem of stability of ABCs, has been tackled through a control system's state-space point of view. Thus, occurrence of instability in a simulation can be predicted. © 2007 IEEE  

    Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding

    , Article Ultrasonics ; Volume 49, Issue 8 , 2009 , Pages 682-695 ; 0041624X (ISSN) Rajabi, M ; Hasheminejad, S. M ; Sharif University of Technology
    Abstract
    The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global...