Loading...
Search for: state-space-equation
0.01 seconds

    Sliding mode leader following control for autonomous air robots

    , Article 2011 IEEE/SICE International Symposium on System Integration, SII 2011, 20 December 2011 through 22 December 2011 ; December , 2011 , Pages 972-977 ; 9781457715235 (ISBN) Soleymani, T ; Saghafi, F ; Sharif University of Technology
    2011
    Abstract
    In this paper, we propose a leader following control for autonomous air robots. The separated design strategy with kinematic acceleration commands is used. The location of the robot with respect to the leader is specified by a range and two angles. We obtain the kinematic model of the system represented by the state-space equations. The controller is designed based on the sliding mode control which asymptotically stabilizes the tracking errors in presence of uncertainties and disturbances. In order to implement the leader following controller in the air robots, a control system is introduced which converts the acceleration commands to the actuator commands. Simulations are provided to show... 

    Short-circuit analysis in three-phase quasi-Z-source inverter

    , Article 17th IEEE International Conference on Environment and Electrical Engineering and 2017 1st IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2017, 6 June 2017 through 9 June 2017 ; 2017 ; 9781538639160 (ISBN) Yaghoubi, M ; Moghani, J. S ; Noroozi, N ; Zolghadri, M. R ; IEEE EMC Society; IEEE Industry Applications Society (IAS); IEEE Power and Energy Society (PES) ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this paper, the short-circuit fault in three-phase quasi-Z-source inverter (q-ZSI) is analyzed and a linear model is proposed for the short-circuit analysis. The proposed model is based on the state space equations of the system. By using this model, the most critical situation during short-circuit fault is recognized; the maximum reaction time for the protection system could be estimated and elements that are prone to failure are identified as well. The analysis is categorized into two groups, leg fault and switch fault. The linear model is confirmed by simulation of 1kw three-phase q-ZSI. © 2017 IEEE  

    Vibration control of beams on elastic foundation under a moving vehicle and random lateral excitations

    , Article Journal of Sound and Vibration ; Volume 331, Issue 6 , March , 2012 , Pages 1217-1232 ; 0022460X (ISSN) Zarfam, R ; Khaloo, A. R ; Sharif University of Technology
    2012
    Abstract
    The formulation of three-dimensional dynamic behavior of a Beam On Elastic Foundation (BOEF) under moving loads and a moving mass is considered. The weight of the vehicle is modeled as a moving point load, however the effect of the lateral excitation is considered by modeling: (case 1) a lateral moving load with random intensity for wind excitation and (case 2) a moving mass just in lateral direction of the beam for earthquake excitation. A Dirac-delta function is used to describe the position of the moving load and the moving mass along the beam. The beam foundations are considered as elastic Winkler-type in two perpendicular transverse directions. This model is proposed to investigate the...