Loading...
Search for: state-space-representation
0.009 seconds

    Tip tracking control of a micro-cantilever Timoshenko beam via piezoelectric actuator

    , Article JVC/Journal of Vibration and Control ; Vol. 19, issue. 10 , 2013 , pp. 1561-1574 ; ISSN: 10775463 Shirazi, M. J ; Salarieh, H ; Alasty, A ; Shabani, R ; Sharif University of Technology
    Abstract
    In this paper, the tip tracking control problem of a Timoshenko micro-cantilever beam is investigated. The beam is actuated by a piezoelectric layer laminated on one side of the beam. Dynamic equations of the beam and piezoelectric layer are found using the Hamilton principle. By employing the Galerkin projection method, state space representation of the system is derived. Then, a cascade control loop is used for tracking control of the beam's tip. The cascade control structure consists of an inner loop stabilizer and an outer loop proportional-integral-derivative controller. The stabilizer has a linear feedback form whose states are obtained through a linear observer which is based on the... 

    Tip tracking control of a micro-cantilever Timoshenko beam via piezoelectric actuator

    , Article JVC/Journal of Vibration and Control ; Volume 19, Issue 10 , 2013 , Pages 1561-1574 ; 10775463 (ISSN) Shirazi, M. J ; Salarieh, H ; Alasty, A ; Shabani, R ; Sharif University of Technology
    2013
    Abstract
    In this paper, the tip tracking control problem of a Timoshenko micro-cantilever beam is investigated. The beam is actuated by a piezoelectric layer laminated on one side of the beam. Dynamic equations of the beam and piezoelectric layer are found using the Hamilton principle. By employing the Galerkin projection method, state space representation of the system is derived. Then, a cascade control loop is used for tracking control of the beam's tip. The cascade control structure consists of an inner loop stabilizer and an outer loop proportional-integral-derivative controller. The stabilizer has a linear feedback form whose states are obtained through a linear observer which is based on the... 

    Conditions on decomposing linear systems with more than one matrix to block triangular or diagonal form

    , Article IEEE Transactions on Automatic Control ; Volume 60, Issue 1 , May , 2015 , Pages 233-239 ; 00189286 (ISSN) Mesbahi, A ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This technical note provides necessary and sufficient conditions to determine that a linear system with more than one matrix in its state-space representation can be decomposed into cascade or separate sub-systems. In order to perform such decomposition, one needs to determine a linear transformation matrix. Furthermore, the given conditions are adapted to a simple but effective condition to derive all possible scalar sub-systems for a given linear system. Numerical examples are provided to demonstrate the applicability of the presented results  

    Active control of robotic manipulators vibration via feedback control

    , Article 17th International Congress on Sound and Vibration 2010, ICSV 2010, 18 July 2010 through 22 July 2010 ; Volume 1 , 2010 , Pages 464-471 ; 9781617822551 (ISBN) Moradi, H ; Bakhtiari Nejad, F ; Sadighi, M ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper, a robotic manipulator modelled as a cantilever rotating Euler-Bernoulli beam is considered. Control objective is achieving a desired angular rotation of the manipulator tip while its lateral vibration is suppressed. An external driving torque is the control input of the system. Two dynamic transfer functions are derived to describe beam tip motion and angular rotation in terms of the desired angular rotation. After state-space representation of the problem, an observer is designed to estimate state variables of the system. Then, a feedback control is designed for both regulation and tracking objectives. Eigenvalues are chosen such that an appropriate response is achieved while... 

    Performance control of a tape transport mechanism using entire eigenstructure assignment

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; Vol. 10, Issue PART A , 2010 , pp. 133-140 ; ISBN: 9780791843833 Moradi, H ; Hajikolaei, K. H ; Motamedi, M ; Alasty, A ; Sharif University of Technology
    Abstract
    To achieve high rate of data transfer, tape mechanisms must be able to transport the tape with a constant velocity for scanning. During this process, it is desired to make the rise time minimized without timing and data transfer errors. In this paper, three servo systems including the take-up and supply reel servos for tape tension control and capstan servo for speed control are considered. So, tape transport mechanisms can be described with a nonlinear multi-input multi-output system (MIMO). After state-space representation of the problem, feedback control is designed for tracking objective. It should be mentioned that an increase in the speed of time response of system corresponds to an... 

    A compensated PID active queue management controller using an improved queue dynamic model

    , Article International Journal of Communication Systems ; Vol. 27, issue. 12 , 2014 , pp. 4543-4563 Kahe, G ; Jahangir, A. H ; Ebrahimi, B ; Sharif University of Technology
    Abstract
    Beside the major objective of providing congestion control, achieving predictable queuing delay, maximizing link utilization, and robustness are the main objectives of an active queue management (AQM) controller. This paper proposes an improved queue dynamic model while incorporating the packet drop probability as well. By applying the improved model, a new compensated PID AQM controller is developed for Transmission Control Protocol/Internet Protocol (TCP/IP) networks. The non-minimum phase characteristic caused by Padé approximation of the network delay restricts the direct application of control methods because of the unstable internal dynamics. In this paper, a parameter-varying dynamic... 

    Continuous-time state-space unsteady aerodynamic modeling based on boundary element method

    , Article Engineering Analysis with Boundary Elements ; Volume 36, Issue 5 , 2012 , Pages 789-798 ; 09557997 (ISSN) Mohammadi Amin, M ; Ghadiri, B ; Abdalla, M. M ; Haddadpour, H ; De Breuker, R ; Sharif University of Technology
    2012
    Abstract
    In this paper a continuous-time state-space aerodynamic model is developed based on the boundary element method. Boundary integral equations governing the unsteady potential flow around lifting bodies are presented and modified for thin wing configurations. Next, the BEM discretized problem of unsteady flow around flat wing equivalent to the original geometry is recast into the standard form of a continuous-time state-space model considering some auxiliary assumptions. The system inputs are time derivative of the instantaneous effective angle of attack and thickness/camber correction terms while the outputs are unsteady aerodynamic coefficients. To validate the model, its predictions for... 

    Performance control of a tape transport mechanism using entire eigenstructure assignment

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 10, Issue PART A , 2010 , Pages 133-140 ; 9780791843833 (ISBN) Moradi, H ; Haji Hajikolaei, K ; Motamedi, M ; Alasty, A ; Sharif University of Technology
    Abstract
    To achieve high rate of data transfer, tape mechanisms must be able to transport the tape with a constant velocity for scanning. During this process, it is desired to make the rise time minimized without timing and data transfer errors. In this paper, three servo systems including the take-up and supply reel servos for tape tension control and capstan servo for speed control are considered. So, tape transport mechanisms can be described with a nonlinear multi-input multi-output system (MIMO). After state-space representation of the problem, feedback control is designed for tracking objective. It should be mentioned that an increase in the speed of time response of system corresponds to an... 

    Parameters estimation for continuous-time heavy-tailed signals modeled by α-stable autoregressive processes

    , Article Digital Signal Processing: A Review Journal ; Volume 57 , 2016 , Pages 79-92 ; 10512004 (ISSN) Hashemifard, Z ; Amindavar, H ; Amini, A ; Sharif University of Technology
    Elsevier Inc  2016
    Abstract
    In this paper, we focus on the heavy-tailed stochastic signals generated through continuous-time autoregressive (CAR) models excited by infinite-variance α-stable processes. Our goal is to estimate the parameters of the continuous-time model, such as the autoregressive coefficients and the distribution parameters related to the excitation process for the α-stable CAR process with 0<α>2 based on the state-space representation. Likewise, we investigate the closed form expressions for the parameters of equivalent model in the discrete-time setting via regular samples of the process. We analyze the estimator based on the Monte Carlo simulations and illustrate the estimator consistency to the... 

    Tracking dynamical transition of epileptic EEG using particle filter

    , Article 8th IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2008, Sarajevo, 16 December 2008 through 19 December 2008 ; February , 2008 , Pages 270-274 ; 9781424435555 (ISBN) Mamaghanian, H ; Shamsollahi, M. B ; Hajipour, S ; IEEE Signal Processing Society and IEEE Computer Society ; Sharif University of Technology
    2008
    Abstract
    In this work we used the Liley EEG model as a dynamical model of EEG. Two parameters of the model which are candidates for change during an epileptic seizure are defined as new states in state space representation of this dynamical model. Then SIS particle filter is applied for estimating the defined states over time using the recorded epileptic EEG as the observation of the system. A method for fast numerical solution of the nonlinear coupled equation of the model is proposed. This model is used for tracking the dynamical properties of brain during epileptic seizure. Tracking the changes of these new defined states of the model have good information about the state transition of the model... 

    Analysis of frequency-dependent network equivalents in dynamic harmonic domain

    , Article Electric Power Systems Research ; Volume 193 , 2021 ; 03787796 (ISSN) Karami, E ; Hajipour, E ; Vakilian, M ; Rouzbehi, K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Rational function-based models have proved to be very efficient for accurate frequency-dependent modeling of power system components. These models are able to characterize the components terminal behaviours (analysing the admittance matrix) for nodal analysis. This provides a fast convergence and inherent stability to the solution routine of the model. This work presents a general framework for interfacing the dynamic phasor method to the rational models. That would be promising for the electromagnetic transient analysis (under harmonic distortion), in the frequency domain. Therefore, Y-element rational pole-residue models (employing the vector fitting method) are developed. Moreover, the... 

    Probabilistic worth assessment of distributed static series compensators

    , Article IEEE Transactions on Power Delivery ; Vol. 26, issue. 3 , 2011 , p. 1734-1743 ; ISSN: 08858977 Dorostkar-Ghamsari, M ; Fotuhi-Firuzabad, M ; Aminifar, F ; Sharif University of Technology
    Abstract
    The deployment of flexible ac transmission system (FACTS) devices, despite miscellaneous benefits and applications, has been restricted mainly due to their large investment costs. Accordingly, the notion of distributed FACTS (D-FACTS) was recently proposed. Distributed static series compensators (DSSCs), as a new member of D-FACTS, are directly clamped to conductors of transmission lines. The possibility of controlling the compensation rate of DSSCs from the control center affords the active control of network power flow. This paper presents a comprehensive reliability model for the DSSC. The model is then reduced and a state-space representation is extracted for a transmission line with a... 

    Multivariable control of an industrial boiler-turbine unit with nonlinear model: A comparison between gain scheduling and feedback linearization approaches

    , Article Scientia Iranica ; Volume 20, Issue 5 , 2013 , Pages 1485-1498 ; 10263098 (ISSN) Moradi, H ; Alasty, A ; Saffar Avval, M ; Bakhtiari Nejad, F ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    Due to demands for the economical operations of power plants and environmental awareness, performance control of a boiler-turbine unit is of great importance. In this paper, a nonlinear Multi Input-Multi Output model (MIMO) of a utility boilerturbine unit is considered. Drum pressure, generator electric output and drum water level (as the output variables) are controlled by manipulation of valves position for fuel, feedwater and steam flows. After state space representation of the problem, two controllers, based on gain scheduling and feedback linearization, are designed. Tracking performance of the system is investigated and discussed for three cases of 'near', 'far' and 'so far' setpoints.... 

    Probabilistic worth assessment of distributed static series compensators

    , Article IEEE Transactions on Power Delivery ; Volume 26, Issue 3 , July , 2011 , Pages 1734-1743 ; 08858977 (ISSN) Dorostkar Ghamsari, M ; Fotuhi Firuzabad, M ; Aminifar, F ; Sharif University of Technology
    2011
    Abstract
    The deployment of flexible ac transmission system (FACTS) devices, despite miscellaneous benefits and applications, has been restricted mainly due to their large investment costs. Accordingly, the notion of distributed FACTS (D-FACTS) was recently proposed. Distributed static series compensators (DSSCs), as a new member of D-FACTS, are directly clamped to conductors of transmission lines. The possibility of controlling the compensation rate of DSSCs from the control center affords the active control of network power flow. This paper presents a comprehensive reliability model for the DSSC. The model is then reduced and a state-space representation is extracted for a transmission line with a...