Loading...
Search for: static-deflection
0.005 seconds

    Vibration Analysis of an Electrostatically Actuated Microbeam Using Homotopy Perturbation Method

    , M.Sc. Thesis Sharif University of Technology Mojahedi, Mahdi (Author) ; Ahmadiyan, Mohammad Taghi (Supervisor)
    Abstract
    Microelectromechanical have wide application in mechanic, aerospace, medical, transport and information technology.
    Due to large scale application and production, low costs and low energy consumption, these systems have been used in wide range of fields of engineering. Electrostatically actuated microbeams are extensively used as microelectromechanical systems (MEMS) such as microswitch and microresonator. The main component of electrically driven is microbeam. Microbeam acts as top surface of a capacitor with fixed bottom. The capacitance of capacitor changes due to the deflection of the microbeam. In this study static deflection of electrostatically actuated microbeam has been... 

    Optimization of the Arrangement of Internal Rib Stiffeners for Columns of the Milling Machine to Achieve Maximum Stiffness and Maximum Working Frequency Range.

    , M.Sc. Thesis Sharif University of Technology Shokri, Aziz (Author) ; Akbari, Javad (Supervisor)
    Abstract
    Vertical milling machine is one of the most common machine tools for precision parts production. The static deflection of the machine tool and thus the displacement of the tool, is due to the high machining forces is the most important factor in reducing the dimensional Precision of the work piece. Also, the overlap of the frequency range of operation with the natural frequencies causes an undesirable resonance phenomenon. Reducing the strain energy of the column and thus the reducing the displacement of the tool, and increasing the first natural frequency of the milling machine, given that the frequency range of operating is below the first frequency, is a desirable change that can be... 

    On the static pull-in of circular microplates under capillary force

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 ; Volume 11 , 2011 , Pages 401-405 ; 9780791854976 (ISBN) Kahrobaiyan, M. H ; Fallah, A ; Bozorgzadeh, S ; Firoozbakhsh, K ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this paper, the static pull-in phenomenon is investigated in circular micro-plates subjected to capillary force. The capillary force appears in micro-scale structures due to presence of a liquid bridge. The governing equation of a circular micro-plate subjected to capillary force is presented and the static deflection of a fully-clamped circular plate is evaluated. Moreover, the effect of the normalized adhesion tension caused due to the capillary force on the static pull-in of the micro-plate is assessed  

    Application of the extended kantorovich method to the static deflection of microplates under capillary force

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010 ; Volume 10 , November , 2010 , Pages 113-119 ; 9780791844472 (ISBN) Moeenfard, H ; Kahrobaiyan, M. H ; Ahmadian, M. T ; Sharif University of Technology
    2010
    Abstract
    The aim of this paper is to apply an Extended Kantorovich method (EKM) to simulate the static deflection of microplates under capillary force. The model accounts for the capillary force nonlinearity of the excitation. Starting from a one term Galerkin approximation and following the Extended Kantorovich procedure, the equations governing the microplate deflection are obtained. These equations are then solved iteratively with a rapid convergence procedure to yield the desired solution. The effects of capillary force on the pull-in phenomenon of microplates are delineated in some figures. It is shown that rapid convergence, high precision and independency of initial guess function makes the... 

    A numerical procedure for obtaining the static and pull-in deflection and voltage of capacitive microcantilever beams

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Ghaemi Oskouei, B ; Alasty, A ; Sharif University of Technology
    2006
    Abstract
    A numerical procedure is proposed for obtaining the static deflection, pull-in (PI) deflection and PI voltage of electrostatically excited capacitive microcantilever beams. The method is not time and memory consuming as Finite Element Analysis (FEA). Nonlinear ordinary differential equation of the static deflection of the beam is derived, w/wo considering the fringing field effects. The nondimensional parameters upon which PI voltage is dependent are then found. Thereafter, using the parameters and the numerical method, three closed form equations for pull-in voltage are developed. The results are in good agreement with others in literature. Copyright © 2006 by ASME  

    The influence of the intermolecular surface forces on the static deflection and pull-in instability of the micro/nano cantilever gyroscopes

    , Article Composites Part B: Engineering ; Vol. 56, issue , January , 2014 , p. 336-343 Mojahedi, M ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    Abstract
    In this paper, the effects of van der Waals and Casimir forces on the static deflection and pull-in instability of a micro/nano cantilever gyroscope with proof mass at its end are investigated. The micro/nano gyroscope is subjected to coupled bending motions which are related by base rotation and nonlinearities due to the geometry and the inertial terms. It is actuated and detected by capacitance plates which are placed on the proof mass. The extended Hamilton principle is used to find the equations governing the static behavior of the clamp-free micro/nano gyroscopes under electrostatic, Casimir and van der Waals forces. The equations of static motion are discritized by Galerkin's... 

    Vibration analysis of electrostatically actuated nonlinear microbridges based on the modified couple stress theory

    , Article Applied Mathematical Modelling ; Volume 39, Issue 21 , November , 2015 , Pages 6694-6704 ; 0307904X (ISSN) Rahaeifard, M ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    In this paper natural frequency of electrostatically actuated microbridges is investigated based on the modified couple stress theory. Nonlinear formulation of Euler-Bernoulli microbeam is derived using Hamilton's principle. By considering the von-Karman strain, the nonlinearities caused by the mid-plane stretching are included in the formulation. To confirm the model, results of static deflection and natural frequency of microbeams are calculated using modified couple stress theory and compared to those evaluated based on the classical theory and experimental observations. At first, from experimental results of static deflection of a microcantilever, estimation for length scale parameter of... 

    Application of the extended kantorovich method to the static deflection of electrically actuated microplates

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 13, Issue PART A , 2009 , Pages 325-331 ; 9780791848746 (ISBN) Ahmadian, M. T ; Moeenfard, H ; Pirbodaghi, T ; Sharif University of Technology
    2009
    Abstract
    The aim of this paper is to present an Extended Kantorovich approach to simulate the static deflection of microplates under electrostatic voltage. The model accounts for the electric force nonlinearity of the excitation. Starting from a one term Galerkin approximation and following the Extended Kantorovich procedure, the equations governing the microplate deflection are obtained. These equations are then solved iteratively with a rapid convergence procedure to yield the desired solution. The results are validated, comparing them with other theoretical results and experimental findings, reported in the literature. It is shown that rapid convergence, high precision and independency of initial... 

    Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method

    , Article Applied Mathematical Modelling ; Volume 34, Issue 4 , 2010 , Pages 1032-1041 ; 0307904X (ISSN) Mojahedi, M ; Moghimi Zand, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this study, static pull-in instability of electrostatically-actuated microbridges and microcantilevers is investigated considering different nonlinear effects. Galerkin's decomposition method is utilized to convert the nonlinear differential equations of motion to nonlinear integro-algebraic equations. Afterward, analytic solutions to static deflections of the microbeams are obtained using the homotopy perturbation method. Results are in excellent agreement with those presented in the literature  

    Study of the effects of miniaturization on static and dynamic form errors in desktop milling machines

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 4 , 2010 , Pages 587-595 ; 9780791843772 (ISBN) Vazirian, M ; Movahhedy, M. R ; Akbari, J ; Sharif University of Technology
    Abstract
    Desktop and miniaturized machine tools are a new trend in small scale and customized manufacturing. The performance of these machines in terms of their energy consumption, machining fluid consumption and their precision have been investigated in the literature, but the effect of miniaturization on static deflection, stability against chatter and the resulting surface error has not been studied. In this paper, the performance of the desktop milling machine tool in terms of their static and dynamic form errors is studied. The performance of a miniature milling machine used for end milling of a typical workpiece is compared with a similar machine of conventional size through dimensional... 

    On the size-dependent behavior of functionally graded micro-beams

    , Article Materials and Design ; Volume 31, Issue 5 , May , 2010 , Pages 2324-2329 ; 02641275 (ISSN) Asghari, M ; Ahmadian, M. T ; Kahrobaiyan, M. H ; Rahaeifard, M ; Sharif University of Technology
    2010
    Abstract
    In this paper, the size-dependent static and vibration behavior of micro-beams made of functionally graded materials (FGMs) are analytically investigated on the basis of the modified couple stress theory in the elastic range. Functionally graded beams can be considered as inhomogeneous composite structures, with continuously compositional variation from usually a ceramic at the bottom to a metal at the top. The governing equations of motion and boundary conditions are derived on the basis of Hamilton principle. Closed-form solutions for the normalized static deflection and natural frequencies are obtained as a function of the ratio of the beam characteristic size to the internal material... 

    Investigation of Casimir and Van der Waals forces for a nonlinear double-clamped beam using homotopy perturbation method

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 12, Issue PART A , 2010 , Pages 487-494 ; 9780791843857 (ISBN) Mojahedi, M ; Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this study, static deflection and Instability of double- clamped nanobeams actuated by electrostatic field and intermolecular force, are investigated. The model accounts for the electric force nonlinearity of the excitation and for the fringing field effect. Effects of mid-plane stretching and axial loading are considered. Galerkin's decomposition method is utilized to convert the nonlinear differential equation of motion to a nonlinear algebraic equation which is solved using the homotopy perturbation method. The effect of the design parameters such as axial load and mid-plane stretching on the static responses and pull-in instability is discussed. Results are in good agreement with...